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An analytical model developed to describe the crystallization kinetics of spherical glass particles
has been derived in this work. A continuous phase transition from 3D-like to 1D-like crystal growth
has been considered and a procedure for the quantitative evaluation of the critical time for this
3D-1D transition is proposed. This model also allows straightforward determination of the density
of surface nucleation sites on glass powders using differential scanning calorimetry data obtained
under different thermal conditions.
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Important surface crystallization related phenomena,
such as the vitrification ability of any supercooled liquid
and the kinetic competition between viscous flow sinter-
ing and surface crystallization of glass powders1,2, are
commonly calculated by using an estimated number of
heterogeneous nucleation sites per unit surface, Ns =
n/(N · Sg). In this approach, it is assumed that a num-
ber N of equal-size glass particles having surface area,
Sg, can be formed with a total number of crystallization
sites, n. However, there is no unambiguous and sim-
ple method to determine Ns from direct measurements3.
The value of Ns along with the average particle radius,
R, size distribution and the linear growth rate, u, play a
crucial role on the particle crystallization kinetics4–7. In
this article, we derived a simplified model to account for
the nucleation and growth of crystals (of simple geome-
try) on spherical glass particles. This modeling is based
on a proper use of universal parameters and enables a
simulation of the whole process and all its stages, which
vary from three-dimensional (3D) growth from a glass
particle surface to one-dimensional (1D) growth toward
its interior.

In Fig. 1 we show an example of sequential
crystal growth steps during the sintering of diopside
(CaO.MgO.2SiO2) glass powders. The micrographs cor-
respond to annealing steps performed at 825 0C for 2h
(a), 4h (b), and 8h (c). After 2h of thermal treatment,
crystal formation can be detected around the vitreous
grains, shown by light dots in Fig. 1 (a). After impinge-
ment of the crystals on the surface of the glass grains
[Fig. 1 (b)], 1D growth prevails, (t > 4h). This pro-
cess finally leads to the complete transformation of the
former vitreous phase into crystals that grow from the
surface towards the grain interior [Fig. 1 (c)]. These
samples were further characterized by differential scan-
ning calorimetry (DSC), as shown by the corresponding
graphics on the right hand side of Fig. 1.

In order to characterize the crystallization of glass par-
ticles as a function of annealing time, t, we assume het-
erogeneous nucleation of cylindrical crystals growing at a
linear rate, u, from a fixed number of sites per unit area,
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FIG. 1: Left: Micrographs of polished sections of diopside
glass particles sintered at 825 C for: (a) 2 h, (b) 4 h and (c)
8 h. Color scale: light-gray phase = crystals; medium-dark
grey phase = glass; from dark gray to black and eventually
white in the center due to reflecting light = pores. Right:
the corresponding DSC spectra of samples subjected to the
different annealing steps at 825 0C before the DSC runs.

Ns. Such growth takes place from the surface of the glass
grains, with the circular base growing at the particles
surface, and the cylindrical axis growing perpendicular
to the surface toward their interior. According to the
Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory8–10,
the crystalline volume fraction of a packing of spherical
glass particles of radius R can be given by3

αv (t, Ns) = 1− exp (−3αs (t,Ns) u · t/R) . (1)

Let us consider a sample with total volume, VT , where
the parameter αv = Vc/VT characterizes the fraction of
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VT that has been crystallized, Vc is the total volume oc-
cupied by crystals, αs = Sc/Sg is the fraction of crystal-
lized surface, defined by the ratio between the crystallized
area, Sc and the glass particle surface, Sg. The surface
crystals reduce the effective surface of the glass particles
available for further crystallization. Again, according to
the JMAK theory11, the fraction of crystalline surface
characterizing this 2D-growth is given by

αs (t, Ns) = 1− exp
(−πNsu

2t2
)
. (2)

Let us now introduce some universal (reduced) parame-
ters τ ≡ u · t/R and νs ≡ 4πR2Ns. One should observe
that τ is proportional to the growth rate of the linear
length of the cylindrical crystalline region and to the ra-
dius of the spherical glass particles, R, (thus, τ ∈ [0, 1])
and νs is the absolute number of nucleation sites on the
surface of a spherical glass particle. With these new pa-
rameters, Eqs. (1) and (2) can be rewritten as

αs (τ, νs) = 1− exp
(−νs · τ2/4

)
, (3)

and

αv (τ, νs) = 1− exp (−3αs (τ, νs) · τ) , (4)

respectively. Thus, the whole kinetic process depends
only on dimensionless parameters: the effective time, τ ,
and νs. The surface and volume time-evolution growth,
as expressed in Eqs. (3) and (4), are universal because
they do not explicitly depend on any specific glass com-
position or temperature. The above equations can be
directly linked to the DSC measurements.

It has been experimentally confirmed that the area un-
der the DSC crystallization peak of partially crystallized
samples, A (τ, νs) (the filled contours in the right panels
of Fig. 1) is proportional to the remaining glassy vol-
ume, αg (τ, νs) VT = (1− αv (τ, νs)) VT , where αg (τ, νs)
is the glass volume fraction in these samples12,13. Thus,
A (τ, νs) ∝ VT [1− αv (τ, νs)].

The total volume can be expressed by the ratio be-
tween the sample mass, m, and the density of the solid
material, ρT = ρg + αv (τ, νs) [ρg − ρc], which is defined
by the crystallized volume fraction and the mass densities
of the crystal and glass phases, ρc and ρg, respectively,
as VT (τ) = m/ (ρg + αv (τ, νs) [ρg − ρc]) Now, consider-
ing equal-mass samples, it is possible to obtain the ratio
between the area under a DSC crystallization peak, at
any given time of the crystallization process, A (τ, νs),
and the area at t = 0, A (0, νs) as

A (τ, νs)
A (0, νs)

=
(

1 +
αv (τ, νs)

[1− αv (τ, νs)]
ρc

ρg

)−1

. (5)

Hence, this equation yields a universal pattern, estab-
lishing a direct relationship between the dimensionless
parameters τ and νs, and the ratio between mass densi-
ties, ρc/ρg.

In Fig. 2 (a), the function A (τ, νs) /A (0, νs) is dis-
played for different values of νs, for the ratio ρc/ρg = 1.
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FIG. 2: (a) Plot of A (τ, νs) /A (0, νs) for ρc/ρg = 1 and dif-
ferent values of the universal parameter νs. The limiting case,
corresponding to large values of νs is indicated by the thick
grey solid curve. (b) Plot of A (τ, νs) /A (0, νs), in the limiting
case νs →∞, for a few values of the ratio ρc/ρg.

Under this condition, for large values for Ns and νs, the
crystallization process can be characterized as 1D. Such
crystal growth conditions can be often observed, as shown
for example in Figs. 1 (b) and (c) for diopside glass sam-
ples annealed at 825 0C for over 4 h, where the surface of
the original glass particles is totally crystallized. In the
limiting case of large Ns or, according to Eq. 4, for νs →
∞, the value of the crystalline volume fraction becomes
αv (τ,∞) = 1 − exp (−3 · τ). The corresponding values
of A (τ,∞) /A (0,∞), for ρc/ρg = 1, have been indicated
in Fig. 2 (a) by a thick solid grey curve. They deter-
mine the lowest limit of A (τ, νs) /A (0, νs), for any pos-
sible combination of parameters. The dependence on the
density ratio ρc/ρg can be seen in Fig. 2 (b), by setting
νs → ∞ within the interval ρc/ρg ∈ [0.7, 1.3]. Thus, the
volume fraction αv (τ, νs) can be expressed as a function
of the area and mass density ratios, A (τ, νs) /A (0, νs),
and ρc/ρg, after using Eq. (5), in the form

αv (τ, νs) =
(

ρc

ρg

A (τ, νs) /A (0, νs)
[1−A (τ, νs) /A (0, νs)]

+ 1
)−1

. (6)

One should note that simple DSC measurements per-
formed with two samples with the same mass, a partially
crystallized and a glassy one, provide the crystallized vol-
ume fraction αv (τ, νs) of materials with known density
ratio ρc/ρg. By knowing u and R, one obtains αs (τ, νs)
from Eq. (6) and together with Eq. (6) one can obtain
the value of the universal parameter νs (see Eq. 4) as

νs = − 4
τ2

ln
(

1 +
1
3τ

ln (1− αv (τ, νs))
)

. (7)

Eqs. (6) and (7) show that experimental values of
A (τ, νs) /A (0, νs) for any τ and ρc/ρg determine the uni-
versal parameter νs = 4πR2Ns. Consequently, the exper-
imental value for R determines the number of heteroge-
neous nucleation sites per unit surface, Ns = n/(N · Sg).

As mentioned before, this surface crystallization pro-
cess can be divided in two main steps, each one with
a predominant morphological characteristic: (i) 3D-like
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FIG. 3: (a) Function F (τ, νs) for various values of νs (the
asymptotic limit F (τ, νs) → τ that corresponds to the 1D
growth mode is shown). (b) Regions of predominant 1D and
3D modes of crystal growth highlighted in continuous and
striped patterns, respectively. Dashed curve: calculated criti-
cal parameter τc, as a function of νs. Solid vertical line: path
corresponding to experimental observations shown in Fig. 1.

crystal growth on the surface and into the volume of
glass particles, (ii) when the total surface area of the
glass particle is filled with crystals (αs (τ, νs) → 1), the
crystal layer continues to grow towards the glass inte-
rior in a 1D mode. As this is a continuous transforma-
tion of the predominant morphological mode, there is no
clear boundary between these two processes. However,
our model allows us to characterize this continuous 3D-
1D transition in terms of effective parameters and crit-
ical values. We can introduce the function F (τ, νs) ≡
1
3 ln (1− αv (τ, νs))

−1 = αs (τ, νs) ·τ . The 3D-like crystal
growth is “stalled” when αs (τ, νs) → 1 and this condi-
tion corresponds to the asymptotic limit F (τ, νs) → τ .
In Fig. 3 (a), we show the plots of F (τ, νs) for different
values of νs. In order to reach a criterion for the charac-
terization of the transition between the two crystalliza-
tion modes, we can define a critical dimensionless time,
τc, where d2F (τc) /dτ2 = 0. This yields an exact value of
the critical dimensionless time for the 3D-1D phase tran-
sition between the crystallization growth mode given by
τc =

√
6/νs (depicted in Fig. 3(b)). It is important

to note that this criterion gives, according to Eq. (3),
the boundary value for the crystallized surface fraction
αs (τc, νs) = 1 − exp

(− 6
4

) ' 0.7769, which is indepen-
dent of νs. In terms of the critical dimensionless time,
Eq. (4) transforms to αs (τ, νs) = 1−exp

[
−6/4 (τ/τc)

2
]
.

A universal phase diagram can be produced, as shown in
Fig. 3 (b), which depends only on τ and νs and such a
diagram may be used to characterize the crystallization
process of spherical glass particles. This is a relevant fac-
tor in problems, such as in the control of viscous sintering
with concurrent surface crystallization and of the residual
porosity in sintered glasses. For instance, one can observe
the largest pore highlighted in Fig. 1 (c), which is bound
to the crystal formation on the surface of the glass par-
ticles. In this case, the experimental DSC values yield a
mean value νs ∼ 31.4. According to Eq. (7), this value
corresponds to Ns ∼ 3 × 1011m−2 (the approximate ex-
perimental path, during the thermal annealing, has been
displayed in Fig. 3(b) while the parameters for the diop-
side glass used in this calculation were: u = 2 · 10−10

m/s, R ∼ 5 µm, ρc = 3261 kg/m3, ρg = 2805 kg/m3).
The calculated value of the critical dimensionless time
for this material yields τc = 0.437, that corresponds to 3
h of annealing.

In summary, we developed a universal mathematical
treatment to deal with the crystallization kinetics of
spherical glass particles. Our model has no boundary
when passing from the 3D-like crystallization mode on
the surface to a 1D-like mode towards the glass interior.
We have shown how the area under the DSC crystalliza-
tion peaks of two samples, one partially crystallized and
other glassy, can be used to determine important param-
eters, such as the number of heterogeneous nucleation
sites per unit surface, and the crystallized volume frac-
tion. We have discussed the application limits of this
analysis. Finally, we have proposed a phase diagram to
characterize the crystallization process of spherical glass
particles based on universal parameters.
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