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Theoretical relations between the Sracture strength of
glass specimens subjected to different testing procedures
are reviewed. The following techniques are analysed: pure
bending, three and four point bending and the Brazilian
disk test. A full derivation is presented for the Brazilian
disk test. The relative severity of each testing technique
is discussed.

The fracture strength of glasses and brittle materials
in general depend on the size, spatial distribution and
geometry of micro-defects on the specimen surface (or
in the volume), as well as on the probability of these
defects being subjected to a critical stress. The fracture
probability, F, of brittle materials under stress is often
described by the Weibull statistics"

F=l-exp(-B) (1

where B is a function of the defect distribution and is
denominated as the Weibull integral.

Glasses and ceramics, submitted to simple tension
lests, are particularly sensitive to random parasitic
bending moments and the fracture stress results are
often masked, as discussed by Marschall & Rudnick.®
Thus, other procedures are normally employed to esti-
mate the maximum stress, (,,,) supported by a given
specimen. The most common are the three and four
point bending tests. Another technique used to evalu-
ate the fracture stress is the diametral compression test
of disks and cylinders (the Brazilian test). Pure bend-
ing tests are only applied to fibre specimens.

Although the solutions presented here are available
in the literature, they are scattered in several papers
and books, and each author uses his own notation mak-
ing it difficult to find out the relevant equations needed
to compare fracture results obtained in different tests,
In this communication we intend to put together all
relevant equations using a common notation. Particu-
lar emphasis, including a full derivation, will be given
to the Brazilian disk test because, in spite of its experi-
mental simplicity and ease of sample preparation,® it
has not been frequently explored to study glass frac-
ture behaviour. Finally, a comparison of the relative
severity of each test will be made.
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The effect of volume on glass strength

In its simplest form, the Weibull integral for a speci-
men of volume ¥, subjected to a stress o{o>0 refers to
tensile stress), can be expressed as

T

for 0>0 (2a)
for 0<0 (2b)

where m and o, are material properties. The first is a
dimensionless parameter and the second has dimen-
sions of [stress]x[volume]"™.

For the case of pure tensile testing, the stresses in
any section normal to the direction of the applied force,
are given by 0=0,,,. Thus, Equation (2a) becomes

m
gy
When the specimen is subjected to a variable stress
state, Equation (2a) must be evaluated by performing

the integral over all volume elements, dV. Hence for
any stress state, Equation (3) can be rewritten as

() V)

where V. is the effective volume. ¥, can be defined as
the theoretical volume of a sample under uniform
Stress, O, having identical fracture probability of a
sample with volume ¥ subjected to a nonuniform stress
state, with identical fracture stress Omax- Hence, two
specimens with effective volumes Vaand V,; have iden-
tical fracture probability when subjected to stresses o,
and o, which satisfy the following relation

o' Va=07"Vy (5)
This relation explains the well known fact that the larger
the specimen size the smaller its fracture strength.,
Bending tests

Figure 1 shows a schematic load, P on a prismatic
specimen, in a typical bending test. The inner load po-
sitions are defined by a dimensionless parameter, 3. In
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the case of four point bending, for which the internal
loads are symmetrically applied at 1/4 of the distance
L, B=1/4. The normal stress o, parallel to the speci-
men axis, can be calculated for any volume element,
using the elementary beam theory.™

Specimens of rectangular cross section

For specimens having rectangular cross sections, of
width, b and height, A

Omwax=3B PLIbH* (6)

and thus integration of Equation (2a) leads to

O [ (1-28)+1
B= £ el (7)
o 2(m+1)
where the term in the second parenthesis is the effec-
tive volume V.. Thus, A=V,/V is a dimensionless pa-
rameter, known as the normalised effective volume,
which depends only on the Weibull constant, m and
on the stress distribution. Thus, it does not depend on
the absolute stress values. Davies"” gives an algebraic

solution that coincides with Equation (7).
In the case of three-point bending (8=1/2) one has

1

A=

2(m+1)? (8)

whereas for the case of four point bending with =1/4
__m+2

A= Fom+ 1y ®

Kittl® studied the case of pure bending where the speci-
men (normally in the form of a fibre) is subjected to a
constant moment, M, over a distance L. Equation (7)
can be adapted to include this situation by making =0
and using

Cmax=6MIbH? (10)

Thus, in the case of pure bending, the normalised vol-
ume 1s

1
A i) an

Specimens of circular cross section

For specimens having circular cross sections of diam-
eter D, one has

Ona=16BPLITD? (12)

In the case of three point bending, the normalised vol-
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Figure 1. Schematic load position in a bending test
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ume is

F(m-f—l)
1 2

2Jm(m+1) IH(M+4) (13)

2

where I' is the gamma function. In the case of four
point bending, with f=1/4

m+1

e F(T)

i r[’””) (14)
2

For pure bending (=0)

r(m+1]
e | 2

i (m+4J (13)
2

Kittl® gives algebraic solutions which agree with Equa-
tions (13) and (15). Medrano & Gillis® give a numeri-
cal solution which agrees with Equation (15).

The Brazilian disk test

Figure 2 schematically shows the geometrical charac-
teristics of the diametral compression test of cylin-
ders or disks of thickness, / where the load, P is applied
in a strip of finite width, defined by an angle . The
stresses at any coordinate point (r,6) can be obtained
by the Hondros equations®

ool 30z [5)

(16)
_ 2P| &l (L1 r Y
cyg_oarDt{Ot z{l (HnJ(DM]

2n-2
r
53 ]
oo 2
aﬂthl (szj

(17)
where v = sin2no.cos2né.

r6

= 2n-2
(D—/z] Yi oa8)

The direction of the maximum normal stress is per-
pendicular to direction of the applied load and is lo-
cated at the circle centre. That stress is given by

2P sin2a _1

The three stresses of Equations (16-18) have simi-
lar magnitude and cannot be neglected. Therefore, the
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fo
Figure 2. Schematic load position in the Brazilian test

stress state is multi-axial and is considered here with
the criterion of Vardar er al'” to evaluate the effect of
the normal stresses, ,>0, in all planes crossed by a

particular point in the sample. In this case, the Weibull
integral becomes

B:[G—;nﬂ}mjn _[( Tn deA 14 (20)
0 vV | A

O-:nax

where d4=sinydyd¢is the surface element of a sphere
of unit radius around any point in which the principal
stresses are g;20,>0;.

The stress o, can be evaluated by the Batdorf &
Heinisch"" expression

0,=03+(01-03)c0s’ (003 )cos gsin’y 2D

The constant 7 is a correction factor of the integral in
Equation (20) to satisfy the situation, in a simple ten-
sion test, where

01=0,,, and o,=3=0 : (22)

By substituting Equations (21) and (22) into Equation
(20) and integrating on the surface of the unit sphere
we have

m Tl

o __
B:[—'@J anjcos2 v sinydgdy (23)

%o 00
or

o - 4
B= max V-

(%) rngoe o

For Equation (24) to coincide with Equation (3) it is
necessary that
_2m+l1

4r

In the particular case of the Brazilian Test, Equation
(20) becomes

m xD/2 xi2 ¢
B—(G—““L] af | [snj j( Ta ]siwd,pdw}drde
0'0 0 0 0 0 9

max

(25)

(26)
where ¢, is the integration limit for a given angle y, for
which ¢,>0. It can be calculated by

¢=arc cos () 27
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with

PR Ty (0, —0y)cos’y
(0;-0,)sin’y

For 6°<0 a plane exists where ¢,>0 and then O=n/

For 6°1 no plane exists where 6,>0 and then ¢,=(,

Making £=(2r/D) and inserting into Equation (26)
gives

B m sy n DJ2 /2 e -
B:(‘_"W] ‘*J J[Snjf( n }sinwdq)dw rdrdg
T T 3% 0 0\T

(28)

max

where the term into the second parenthesis is the effe_
tive volume. Equation (29) was integrated numerical]y
in this paper.The results coincide with those of Varda;
& Finnie."” Similar results are obtained if the speci-
mens surfaces are considered instead of volumes.

Discussion

Figure 3 shows the variation of the normalised effec.
tive volume, (¥;/¥)"™, with the Weibull parameter, ,,
for the cases of Brazilian test, pure bending, three an(i
four point bending of specimens having rectangulyy
and circular cross sections. As the effective volume val.
ues slightly change with load angle for the Braziligp,
test (V/V typically decreases about 3% for each 2° in-
crement in ¢), only the results for @=8° are presenteq
Equation (5) shows that the fracture stress is in-
versely proportional to ¥."™. Thus, pure tensile testiy,
(A=1) is represented by the upper horizontal limit of
Figure 3. The set of curves show that pure tensile testg
lead to the smallest fracture stresses, followed by pure
bending, the Brazilian test, four point bending apg
three point bending, in that order, for specimens of

1-0

0-2 p

0 i L A " . 1 N
4 6 8 10 12 14 16 18 20
‘Weibull modulus, m

Figure 3. Variation of reduced effective volume (V.JV )™ with Weibygy
parameter for different testing techniques
—X%—  Brazilian test, @=8°

=-O---  Pure—rectangular
---®---  Pure—circular
---0--- 4 point—rectangular
M- 4 point—circular
---A--- 3 point—rectangular
---A--- 3 point—circular
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identical volume, V. This is because the normalised ef-
fective volumes decrease in that same order. It is also
verified that specimens of circular cross sections have
larger fracture stresses than those of rectangular cross
sections, for any bending test. This trend is maintained
for increasingly large values of the Weibull modulus,
m. However, the larger the value of m, the more simi-
lar are the results obtained by each technique, all tend-
ing to the pure tensile test value for m—seo (However,
for real materials, m does not exceed a value of 50).

It should be pointed out that the Brazilian test fre-
quently utilises specimens having volumes which are
one order of magnitude smaller than those of bend-
ing tests. Thus, it is expected that the results of frac-
ture stresses obtained in Brazilian tests are greater than
those obtained in bending tests. Therefore, it is possi-
ble to explain the observed differences in the average
fracture stresses of glasses subjected to distinct testing
procedures.

An important restriction for that comparison is that
the different specimens must be prepared by identical
processing techniques (for instance, identical surface
finishing) to maintain a constant defect distribution
and, consequently, the Weibull parameters. Hence,
many fracture results reported in the literature for di-
ametral compression tests cannot be directly compared
with results obtained in bending tests due to the differ-
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ent degree of surface damage of the specimens. For
example, it is quite common to cut cylindrical rods to
obtain specimens for the Brazilian and bending tests.
However, the critical surface in the first test is perpen-
dicular to the cylindrical axis, while it is parallel to
that axis in bending tests. Thus, the surface finishing
and, consequently, the Weibull parameters are differ-
ent. In that case, Equation (5) cannot be used. Finally,
great care with the sample supports should be exer-
cised when performing the actual mechanical testing,
to minimise parasitic stresses, as demonstrated recently
by Migliore & Zanotto."®
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