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In the past, it has been shown that reasonably good estimates
of critical cooling rates for glass formation could be obtained
by computing the cooling curve which just passes through the
nose of a T-T-T (time—temperature—-transformation) diagram.
Also, it has been noted that critical cooling rates found by
this precedure are generally greater than those obtained by
other methods. Herein, we provide an explanation of these
observations, The nose method of computing critical cooling
rates is compared with others, and specific illustrations are
given for the glass-forming systems Si0O,, GeO;, and P,0;.
[Key words: glass, cooling, silica, germania, phosphates. ]

I. Introduction

GLASS formation requires the aveidance of crystallization as
the melt is undercooled. The more rapid is the rate of cool-
ing, the less time which is available for crystallization, and hence
the greater is the chance of forming a glass.

If one can calculate the crystallization rate as a function of
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Fig. 1. Typical T-T-T diagram. CR is critical cooling path and A is an

arbitrary path with subcritical rate.
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cooling rate, then one can specify the cooling rate needed to
avoid any arbitrary value for the volume fraction of crystals, X,
which would form. For any cooling path, if X =< 107°, then one
may assert that glass formation has occurred.’ The cooling rate,
R., which produces X, = 107° is termed the critical cooling rate
for glass formation.

Clearly, an important goal of glass science is to have a thor-
ough understanding of the factors which are utilized for calcula-
tions of R,. The critical cooling rate depends upon three factors
(assuming that a constant cooling rate is employed): the nuclea-
tions rate and its temperature variation, {(T'), the crystal growth
rate and its temperature dependence, g(7), and the relationship
between the two latter quantities and X. Herein, we focus primarily
on the Jast factor.

Previously, many calculations have been performed to predict
the critical cooling rates for forming metallic and inorganic
glasses.”™ In addition, several different methods have been used
to compute R,. ~* Numerical methods have been developed which
are relatively precise, but laborious to employ. Hence, approxi-
mate methods of calculating R, have been formulated for the sake
of convenience. Perhaps the simplest, and most widely em-
ployed, method is based on avoiding the nose in a T-T-T (time—
temperature—transformation) diagram. This method, hereafter
referred to as the nose method, has particular appeal since it re-
lies on the use of isothermal data solely. It may be illustrated by
examination of Fig. 1. The T-T-T curve gives the times required
to form X, volume fraction of crystals during an isothermal treat-
ment at various temperatures. The critical cooling rate, line CR,
as given by the nose method, is the straight line which connects
the melting point, T,,, and the temperature of maximum crystal-
lization rate, T, (the nose temperature). The slope of the line de-
noted by A is of smaller magnitude than that of CR, and cooling
at the rate indicated by A would produce a partially or totally
crystallized body.

It has been observed that the nose method of predicting R, is in
reasonably good agreement with other methods.”® Also, it has
been noted that R, values found by the nose method are typically
larger than those computed by other techniques. The origin and
generality of these findings have not been examined. Further-
more, it is not readily apparent why the nose method should
provide an upper bound for R.. If a significant degree of crystal-
lization were to occur only in the temperature regime from the
melting point to the temperature at the nose, then it would be
easy to understand why the nose method produces an upper limit
for the critical cooling rate. Under such circumstances one may
readily deduce from an inspection of Fig. 1 that R,, > R, (where
R., is the critical cooling rate found via the nose method). How-
ever, it is known that appreciable crystallization does occur at
temperatures below the nose, and thus the basis for the nose
method needs additional inquiry.

The issues raised above will be addressed in the present work.
Two alternative methods which may be utilized to calculate R,
will be compared to the nose method. Hlustrations will be given
with reference to three specific systems: Si0,, GeO,, and P,0s.
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II. Critical Cooling Rates

First, some standard expression for R, will be reviewed. Next,
some relations between these expressions will be given, assuming
certain behavior of /(T) and g(T). Finally, these assumptions
will be tested via numerical computations.

(1) Standard Expressions

From Fig. 1 it is apparent that R,,, the critical cooling rate ob-
tained by the nose method, is given as

R(’Vl = (Tm - T’l)/t" (1)

where ¢, is the value of time at the nose. Using the fact that for
an isothermal transformation, with / and g independent of time

3.4
_ mlg't )
3
one finds that
- T T, T )™
R, = (T DL/ 34( ) &°(T)] 3)
X!
The precise expression for X is given by
— it
X=1- exp( T8 ) =1 — exp(—X,) (2"

However, since X, = 107¢ for the critical T-T-T curve, then
Eq. (2) is nearly an exact equation for the volume fraction crys-
tallized. For subsequent comparisons it will be more convenient
to introduce a quantity ¥ defined as

g = X.R* @
<§)1<m (T,
Hence
S, =T, -~ T,) (5)

A precise expression for the volume fraction crystallized after
cooling at a constant rate is given by Eq. (6).

Ty Tr 3
X = f?f dTI(T)U g(T) dT’] R™* (6)
Tm T

In Eq. (6) T, is the final temperature, [ is the steady-state nuclea-
tion rate, and g is the crystal growth rate. The expression for ¢
found from Eq. (6) is denoted by ,:

T I(T) F’g(r’) dT’:|3
9, = 4| dr 7
J;,,, T, [ T g(T,) @

Finally, if one assumes that the additivity assumption is valid,*
one finds that the corresponding 9 (designated as 93,) is given by

TF I(T) gJ(T) 14} 4
9, = f dal |——= -~ (8)
{ Tm [1 (T,) (T,
These three expressions for & (Egs. (5), (7), and (8)) appear
quite different in form; and in order to make comparisons among

them, one must use physical information concerning the processes
being studied, and the typical behavior of /(T) and g(7).

(2) Comparisons and Approximations

First, we emphasize that attention will be restricted to homo-
geneous crystallization (i.e., homogeneous nucleation followed
by growth). Typically, in such cases (as will be illustrated subse-
quently) the maximum nucleation rate occurs at much larger under-
coolings (i.e., lower temperatures) than the maximum crystal
growth rate. Also, for standard nucleation and growth expres-
sions, both nucleation and growth rates are sharply peaked func-
tions of temperature, possessing half-widths which are rather
narrow in comparison to 7,, — T,. Therefore, in both Eqgs. (7)
and (8) T; and T,, may be replaced by 7, and T,, respectively,
with 7, > T,and T; < T,. T, and T, are unspecified at this point.
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However, a physical interpretation of 7, — T, will be given
subsequently.

Let us consider Eq. (8). It is clear that the integrand is less
than or equal to unity everywhere since 7, corresponds to the
temperature of maximum crystallization rate. Hence

no [ e
9, = J’dT——f T, - T 9
{ T [I(T/x) g(Tn) = ( I ) ©

"

Comparison of Eqgs. (5) and (9) shows that a sufficient (but not
necessary) condition for &, > ¢&,is T, — T, > T, — T,. The
latter inequality has a very simple physical interpretation.
T,, — T, is the temperature difference between the melting point
and the position of maximum crystallization rate, while 7, — T,
is roughly a measure of the breadth of the crystallization curve
(difference in temperatures at which /g’ becomes approximately
nonzero). Thus, if the temperature difference between the melt-
ing point and the temperature of maximum crystallization rate is
larger than the *“full width” of the crystallization curve, then the
nose method will predict a larger critical cooling rate than the
additivity method.

Next, one may consider Eq. (7). As stated previously, the
maximum crystal growth rate usually occurs at small relative under-
coolings (i.e., AT /T, < 1). Therefore. in the temperature
regime where the crystal growth rate is a decreasing function of
temperature (or increasing function of undercooling), the nuclea-
tion rate and thus the integrand of Eq. (7) vanish. Thus, in the
temperature regime where the integrand of §, is sensibly nonzero,
g s an increasing function of temperature (i.e., decreasing func-
tion of undercooling). Hence. one may assert, in reference to
Eq. (7). that g(T') = g(T"). Thus

T T 1y |3
o, - oflar i "er)]
. ATy 8(T)

" IT) gXT)
< 4[ ar ——=——= (T, - T)}
Mgy eay oD
<({T, -T) (10)

Hence, we have the same inequality as derived for the case of
additivity. In other words, if T, — T, < T,, — T,, then the nose
method predicts a larger critical cooling rate than the exact
calculation.

Therefore, for systems in which the maximum crystallization
rate occurs at rather large undercoolings and the crystallization
curve is narrow, then the critical cooling rate found by the nose
method is in a sense an upper limit to the actual critical cooling
rate. In the next section the position and width of the calculated
crystallization curve will be examined for several systems.

III. Calculations

Here, three simple glass-forming systems will be considered
for which critical cooling rate calculations have been performed
employing different techniques.® We select SiQ,, GeO,, and P,0;
as the prototype systems since appropriate thermodynamic and
kinetic parameters are available for computation of nucleation
and growth rates. In addition, they are three of the simplest glass-
forming systems.

The steady-state nucleation rate, /, may be expressed as’

PR e an
7 “P\T@ac)y

where K and K’ are constants, 7 is the shear viscosity, and « is
Turnbull’s ratio (which typically assumes values from !/3 to /2)
which relates the liquid-crystal interfacial tension to the enthalpy
of melting, and AG is the bulk free energy difference between
crystal and melt.

For materials which exhibit small entropies of melting
(AS,,/R < 2), such as the ones chosen above, crystal growth
occurs via a normal growth mechanism," and the crystal growth
rate is given by Eq. (12). It is, perhaps, somewhat questionable
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Table 1. Parameters for Nucleation and Crystal Growth
T, (K) AS, /R A% B (K)*
GeO, 1387 1.31 —9.94 17962
P,0s 853 3.06 —4.87 9071
Si0, 1996 0.901 —13.51 37157
(0.606)" (—6.88) (27 115)°

*log w(Pa-s) = A + B/T. "Used only for Table II for consistency with calcula-
tion of Ref. 8.

whether P,Os crystal growth is described by Eq. (12) since its en-
tropy of melting is a bit large (see Table I). However, for the pur-
pose of comparing various methods of computing R, this point is
not very significant.

KT o226 (12)
£= 7 P\ TRT

If one assumes a constant difference between the specific heats of
crystal and melt, AC,, then AG is as follows:

AG = T,AS,[(1 = T)(1 =) =T, InT,] (13)

In Eq. (13) T,, is the melting point, T, = T/T,, vy = AC,/AS,.
and AS,, is the entropy of melting.

(1) Crystallization Curve Widths and Maximum
Crystallization Temperature

The temperature of maximum crystallization may be readily
obtained by setting d(/g”)/dT equal to zero and using Egs. (11)
to (13). However, in order to find 7, — T, it is most convenient
to use numerical computations. The parameters which were em-
ployed in the nucleation and crystal growth expressions are given
in Table I. In order to find T, — T, for the additivity method the
integrand in Eq. (9) was computed as a function of temperature.
The results for GeO, and P,O5 are shown in Figs. 2 and 3. For
GeO,, T, — T, = 250 K, while for P,Os, T, — T; = 150 K. The
melting points for GeO, and P,Os are 1387 and 853 K, respec-
tively. For GeO,, T,, — T, = 410 K; and for P,O;, T,, — T, =
340 K. Since T,, — T, > T, — T,, by the results of the previous
section one anticipates that ¥, > ¥,; and thus R, > R, for
these two systems. Calculations for SiO, similarly show
¢, > 9,. Forthe latter T, — T, = 300K and T,, — T, = 480 K.

Similar calculations were performed to find the values of
T, — T, for the case of ¥,. Here, we chose to use the approxi-
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Fig. 3. Integrand of Eq. (9) vs temperature for P,Os with & = 0.5 and
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mate (right-hand) integrand of Eq. (10) for simplicity. Two points
should be made regarding the use of the approximate integrand.
First, calculations of the position of the growth rate maxima indi-
cate that the volume fraction crystallized (in the present systems)
in the region of decreasing growth rate is negligible. Second, use
of the approximate form of the integrand provides a more strin-
gent test of the ¥, > &, inequality. The results of a typical calcu-
lation are demonstrated for P,Os in Fig. 4. It is observed that
T, — T, =85 K, while T,, — T, = 340 K. Calculations of a
similar nature for SiO; and GeO, also show T,, — T, > T, — T,
indicating that R, > R,, for these three glasses.

(2) Influence of Nucleation and Growth Parameters

It has been mentioned that Turnbull’s ratio, «, typically as-
sumes values in the range !/3 to !/2. The above calculations were
performed for @ = /2. It is of interest to investigate if the precise
value of & must be known to draw general conclusions concern-
ing the relative sizes of the predicted R, and to study how
T, —T,and T,, — T, vary with changing «.
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Fig. 5. Integrand (approximate) of Eq. (10) for GeQO, with y = 0:
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Also, the above calculations have been executed for vy = 0.
This corresponds to the assumption of AC, = 0. Hence, it is im-
portant to study the effect of increasing vy on the relevant tem-
perature differences. The influence of « and +y variations are now
considered in turn.

It may be shown that as « decreases, 7,, — T, also decreases.
However, no such simple general statement may be offered con-
cerning the behavior of T, — T; with decreasing «. Hence, this
latter feature was studied by direct calculation using the same in-
tegrands as in the above. Typical results are shown in Figs. § and
6, where the integrands of Eq. (10) are plotted as a function of
temperature for GeO, and 8i0O,. One notes that the value of
T, — T, is rather insensitive to «, but as anticipated T,, — T, de-
clines substantially. However, for all three systems the inequality
T, —T,>T,— T is preserved, and hence R, < R.,. Similar
calculations for these three glasses were performed using Eq. (9).
Once again it was found that 7,, — T, > T, — T,. Thus, one
finds that R, < R,, for these systems, even for o = /.

Next, we turn to a consideration of the effect of nonzero y
upon the relative temperature differences. It should be noted that
the approximation of a constant heat capacity difference will be
invalid if y is much greater than 2. If one computes y for the
three glasses considered here by taking AC, at T,, (rather than the
average value over the temperature interval of concern), then
v < 2 is satisfied.

Figure 7 shows the temperature dependence of integrand in
Eq. (9) for P,O; for three values of y. Two features should be
noted. First, neither the peak position nor the width of the crys-
tallization curve is a very sensitive function of . Second, both
7, — T,and T, — T, tend to decrease in magnitude with increas-
ing . Hence, there is a compensatory effect; and the differences
between 7,, — T, and T, — T, vary little with y. Thus.
T, =T,>T,— T forally

IV. Discussion

We have shown why the nose method usually gives an upper
bound to the predicted critical cooling rate. However, the fact
that this method gives reasonable estimates of R, at all is in a
sense fortuitous since the relationship of the location of T, to T,
is not relevant. For example, for systems with high melting
points and large a, T,, — T, will be large and use of the nose
method could be poor since in thiscase 7, — T, > T, = T,.

It is clear that the major contribution to the total volume crys-
tallized for nonisothermal cooling comes from the temperature re-
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gion in the vicinity of the nose. Hence, if one desires to use a
critical T-T-T diagram to make an estimate of R, one should uti-
lize this information. A better estimate of R, could be found by
using T, — T, rather than 7,, — T,; but the former temperature
difference is ill-defined. Let us, arbitrarily, assume that the most
important temperature regime is bounded by the region where the
isothermal transformation time, ¢, is such that r < 2¢,. This crite-
rion allows us to determine a AT (illustrated in Fig. 8) which can
be used to compute R,.

The latter method for computing R, (¢ cutoff) was used to com-
pute the critical cooling rates for SiO; and GeO,. The results of
these calculations are shown in Table II, where they are com-
pared with other values of R, (Ref. 8) found by the nose method
and the numerical integration of the precise form of Eq. (10). The
actual predicted values of R, are not important since they are
quite parameter sensitive as shown in Ref. 8. However, it is ob-
served that the cutoff method is in substantially closer agreement
with the exact calculations than the nose method.
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Table II. Critical Cooling Rates
R, (K/s)
Sio, GeO,
T-T-T (nose) 3.0 x 107 17
T-T-T (t cutoff) 1.1 x 107~ . 5
Exact 0.47 X 10~ 3

V. Summary

The use of the nose method for the computation of critical
cooling rates has been examined and compared to other methods.
It was shown that for homogeneous crystallization it is expected
that this procedure will give an overestimate of R,. This conclu-
sion was drawn after assessing the influence of a range of values
for the parameters which control crystal growth and nucleation.
Finally. an alternative, simple procedure was proposed to compute
critical cooling rates from T-T-T diagrams. The latter technique
was shown to be superior to the nose method in the system studied.
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