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The residual stress distribution that arises in the glass matrix
during cooling of a partially crystallized 17.2Na2O–32.1CaO–
48.1SiO2–2.5P2O5 (mol%) bioactive glass–ceramic was mea-
sured using the Vickers indentation method proposed by Zeng
and Rowcliffe (ZR). The magnitude of the determined residual
stress at the crystal/glass boundary was 1/4–1/3 of the values
measured using X-ray diffraction (within the crystals) and cal-
culated using Selsing’s model. A correction for the crack geom-
etry factor, assuming a semi-elliptical shape, is proposed and
then good agreement between experimental and theoretical val-
ues is found. Thus, if the actual crack geometry is taken into
account, the indentation technique of ZR can be successfully
used. In addition, a numerical model for the calculation of re-
sidual stresses that takes into account the hemispherical shape of
the crystalline precipitates at a free surface was developed. The
result is that near the sample surface, the radial component of
the residual stress is increased by 70% in comparison with the
residual stress calculated by Selsing’s model.

I. Introduction

BIOMATERIALS development has been focused on materials
that match the bio-mechanical properties of bone and have

sufficient bioactivity to bond to living bone and soft tissue.1–4

An approach to improve the mechanical properties of bioactive
glasses is by controlled crystallization and the development of
glass–ceramics, such as the A/W glass–ceramic (Cerabone), pi-
oneered by Yamamuro and Kokubo.3 The high strength and
toughness of Cerabone makes it a successful load-bearing re-
placement for cortical bone. However, its modulus of elasticity is
one order of magnitude higher than that of cortical bone giving
rise to the possibility of long-term stress shielding when the ma-
terial is used as a bone replacement.4 Also, its low level of bio-
activity is insufficient for bonding to soft connective tissues,4 as
needed for some clinical applications.

In a previous work with glasses within the composition range
1Na2O–2CaO–3SiO2 and 1.5Na2O–1.5CaO–3SiO2, some of us
have shown that crystallization slows down, but does not inhibit
the development of a crystalline hydroxyl–carbonate apatite at
the material/bone interface. The resulting glass–ceramics show a
similar level of bioactivity as the ‘‘golden standard’’ 45S5 Bio-
glass

s1,2 developed by Professor Larry Hench. The main aim
now is to optimize the mechanical properties of these glass–

ceramics, which are strongly dependent on the material’s mi-
crostructure and internal residual stresses.

Internal residual stresses arise in glass–ceramics on cooling
down from the crystallization temperature due to thermal ex-
pansion and elastic mismatch between the crystalline and the
glassy phase. Therefore, the fracture strength of these materials
strongly depends on their microstructure and type (tension or
compression) and the magnitude of these residual stresses.

Different experimental techniques, such as X-ray diffraction,5

Raman spectroscopy,6 and nuclear magnetic resonance7 have
been used to measure residual stresses in the crystalline phase of
glass–ceramics.

A simple technique to measure the residual stress field in the
glass phase in principle was proposed by Zeng and Rowcliffe.8–10

The basis of this technique is as follows: when a Vickers inden-
tation is made with a moderate load on the surface of a stress-
free glass sample, a permanent impression is formed and four
symmetrical radial cracks of equal length arise from the corners
of the generated impression. In addition, a residual stress field is
created around the indentation. Zeng and Rowcliffe8–10 ob-
served that this residual stress field is an unequal bi-axial field,
with a tensile stress in the tangential direction and compressive
stress in the radial direction with respect to the indentation. If a
second indentation is made near the first, the crack pattern and
crack length of the second indentation will be affected by the
residual stress field of the first. By measuring the lengths of the
secondary cracks, and comparing them with the crack length
developed at the same load in a stress-free surface, the resi-
dual field around the first indentation can be calculated using a
simple analysis.

Previously, some of us reported an experimental test of Sel-
sing’s model,11 which is often used to describe the residual
stresses around a second phase, using a partially crystallized
soda–lime–silica glass with the same chemical composition of
the glass used in this work.5 In that study, an average value of
the residual stress field around crystals embedded in the glass
matrix for a particular set of hkl plane was measured (B150
MPa). Good agreement between experimental results and cal-
culation was found.

In the present work, we tested the indentation technique of
Zeng and Rowcliffe8–10 to estimate the residual stress field in the
glass matrix (around crystals embedded in the same glass used in
Peitl et al.1). In this case, the crystals play the role of the primary
indentation that generates residual stress. The results are com-
pared with those obtained using X-ray diffraction experiments
and theoretical modeling for the crystalline particles. In the end,
a new crack geometry factor is proposed to be used in the ZR
model considering the semi-elliptical shape of the generated
cracks. In addition, a numerical model for the calculation of
residual stress, which takes into account the hemispherical shape
of a crystalline precipitate at a free surface, is developed.
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II. Theory

(1) Residual Stress Calculation Using the Indentation
Technique

In order to calculate the residual stress around an indentation,
Zeng and Rowcliffe8 considered first an indentation made in a
stress-free material. In this case, the radial crack length of the
indentation is related to the material’s toughness Kc by the fol-
lowing expression:

Kc ¼ wr
P

c
3=2
0

(1)

where Kc is the stress intensity factor at the indentation crack
tip, P is the indentation load, c0 is the crack length, and wr is a
dimensionless constant, which is related to the ratio of the elastic
modulus to hardness. If a second indentation is made near the
first one, the crack that originated from the second indentation
will be c1 (where c0oc1) because of the effect of the residual
tensile stress from the first indentation, or c2 (where c04c2) be-
cause of the effect of the compressive stress from the first in-
dentation. If the stress intensity factor at the new crack tip is still
Kc, then Eq. (1) becomes8,9:

Kc ¼ wr
P

c
3=2
1

þ Fstc
1=2
1 ðfor tensile stressÞ (2a)

Kc ¼ wr
P

c
3=2
2

� Fscc
1=2
2 ðfor compressive stressÞ (2b)

where F is the crack geometry factor, a constant related to the
crack geometry and loading condition and was assumed to
be equal to p1/2 because the problem treated by Zeng and
Rowcliffe was simplified to a plane stress problem. Their model
also assumes that, if the secondary crack is small, both tensile
and compressive stresses are constant over the secondary crack.
By substituting wr from Eq. (1) in Eq. (2), the following expres-
sions can be obtained for the tensile and compressive residual
stress8,9:

sr ¼ Kc
1� ðc0=c1Þ3=2

Fc1=21

ðfor tensile stressÞ (3a)

sr ¼ �Kc
1� ðc0=c2Þ3=2

Fc1=22

ðfor compressive stressÞ (3b)

Zeng and Rowcliffe used Eqs. (3a) and (3b) to calculate the
residual stress at any point around the first indentation from
measurements of the crack length changes at the second inden-
tation.

(2) Residual Stress Calculation by Selsing’s Model

The theory concerning stresses around an isolated particle in an
isotropic medium is well established.11 Because the thermal
expansion coefficients of the two phases are generally different,
stresses are set up within and around the particles as the body
cools down below the glass transition temperature. An isotropic
spherical particle will be subjected to a pressure P, and the ma-
trix will be subjected to radial and tangential stresses of:

sr ¼ P
a3

r3
ðradial stressÞ (4a)

st ¼ �
P

2

a3

r3
ðtangential stressÞ (4b)

where a is the crystal radius and r is the distance from a point in
the matrix to the center of the particle. For an isotropic system

containing several particles in a matrix, Eq. (4) should still hold
if the stress fields around each particle do not overlap. This sit-
uation is expected to be valid if the volume percentage of the
second phase does not exceed approximately 15%.12 Thus, these
stresses are maximum at the crystal/glass interface (r5 a) and
drop to only 3.7% of the maximum for r5 4a. The hydrostatic
thermal stress,P, can be obtained by the following equation11,12:

P ¼ DaDT=Ke (5)

where Ke ¼ ½ð1þ umÞ=2Em þ ð1� 2upÞ=Ep�, E and n being, re-
spectively, the elastic modulus and the Poisson ratio, and the
subscripts, m and p, refer to the matrix and particle, respec-
tively. Da ¼ ap � am is the thermal expansion mismatch and DT
is the difference between the temperature at which the glass
ceases to flow on cooling (�Tg) and the ambient temperature.

According to previous work,5 the crystals present in this
particular glass–ceramic have an average thermal expansion
coefficient higher than that of the glass matrix, meaning that
the crystals are under hydrostatic tensile stresses and the ex-
pected stress distribution in the matrix is shown in Fig. 1. Hence,
near the crystals, where the indentations are applied, the matrix
will be subjected to tensile stresses in the radial direction and
compressive stresses in the tangential direction, meaning that the
indentation cracks that are parallel to the glass/crystal interface
will be extended due to the influence of the tensile residual stress
and vice versa. Figure 1 shows a schematic diagram of the in-
dentation system and how the crack pattern generated at a small
secondary indent is affected by the residual stress around a large
precipitate.

III. Experimental Procedure

(1) Material Preparation

A 17.2Na2O–32.1CaO–48.1SiO2–2.5P2O5 (mol%) glass was pre-
pared by melting a homogeneous mixture of reagent-grade
Na2CO3, CaCO3, SiO2, and P2O5 at 14001C for 3 h in a Pt cru-
cible. This chemical composition is the same as the glass used in
Mastelaro and Zanotto.5 The melt was then cast between two
cold steel plates, with an estimated cooling rate of 4001C/min.
To obtain partially crystallized glasses, a specimen was submit-
ted to an isothermal treatment at 8401C for a period of 28 min,
followed by annealing at 5401C for 15 min. Microstructural
analysis revealed that the average crystal radius and the crys-
tallized volume fraction were 176723 mm and 4%, respectively.

(2) Indentation Experiments

The crystallized surface of the specimen was removed by grind-
ing with SiC. After polishing with 1 mm CeO2 powder size, crys-
tals embedded in the glass matrix were revealed by chemical
etching in a solution of 0.08% HF–0.04% HCl. Before inden-
tation, all samples were annealed at 5551C for 15 min, cooled

Fig. 1. Schematic diagram showing the indentation system and how the
crack pattern at a small secondary indent is affected by the residual stress
field around a large precipitate (adapted from Zeng and Rowcliffe8).
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down to 5151C in 30 min, and slow cooled to room temperature
at 101C/min for the removal of any macroscopic residual stresses
due to thermal gradients in the sample.

Indentations around the crystals were made using a Vickers
diamond pyramid indenter using a digital microhardness tester
model FM from Future-tech Corp. (Kawasaki, Japan) in a con-
trolled environment of 20–221C and 50%–70% air humidity. As
proposed by Zeng and Rowcliffe,8,9 the secondary indentation
should be sufficiently small and made with low loads. In this
work, a load of 0.5 N was used with a dwell time of 20 s. For
comparison, Zeng and Rowcliffe8,9 used loads between 2 and
7 N for the secondary indentations in soda–lime glass. The total
number of indentations was 40.

The reference crack length c0 was obtained at indentations
made in the same sample in regions far from the crystals at a
distance of approximately 800 mm. This distance is about 3.6
times greater than the radius of the larger crystal assuring the
residual stresses were negligible.

The indentation crack lengths c1 and c2 were measured at in-
dentations made around precipitates that were as close as pos-
sible to a hemispherical shape. Indentations were made at a
distance of approximately 200 mm apart to avoid the influence of
the mutual indentation stress field. Occasionally, when the in-
dentation was very close to the precipitate/glass boundary, the
radial cracks closer to the interface extended inwards the pre-
cipitate. Therefore, only the radial crack facing outward of the
precipitate was measured and used to compute the tangential
residual stress.

To evaluate the effect of water on crack indentation in this
glass, two arrays of 10 indentations were performed in a remote
region far from any precipitate. The indentations in one array
were performed in air, while the indentations in the other array
were performed immersed in distilled water. A load of 2 N was
used with a dwell time of 20 s. The array performed in air was
used to calculate the fracture toughness Kc according to Niihara
et al.13:

Kc ¼ 0:035
l

b

� ��1=2
H

Ef

� ��2=5
H

ffiffiffi
b
p

f

 !
(6)

where H is the Vickers hardness, b is the half-impression diag-
onal, E is the elastic modulus, l is c–a, and f is a constant equal
to 3.

A series of thirty 0.5 N indentations immersed in distilled
water was performed around the precipitates to estimate the
effect of the water environment when residual stresses were
present. We also performed a series of at least eight 1 N inden-
tations inside the precipitates of a partially crystallized sample
and compared the measured crack lengths with the crack lengths
of indentations on a fully crystallized sample to estimate the re-
sidual stresses.

In all situations, the crack lengths were measured immediately
after indentation tests using an optical microscope in either
transmission or reflection mode. The total time between the first
indentation and the last crack length measured is estimated to
be 2 h.

The indentation crack geometry was determined by perform-
ing a series of eight 0.5 N Vickers indentations in the surface of
the bioglass–ceramic far from any precipitate in the same con-
ditions as used in the stress determination tests. The radial crack
geometry was established by hand polishing the glass surface
in a CeO2 and water solution and imaging the indentations by
optical microscopy every 2 min.

A large Vickers indentation with a load of 5 N was performed
near the smaller indentations to control the amount of surface
removal during polishing. For Vickers indenter geometry, the
diagonal/depth ratio is 7. Also, there is an elastic recovery of
indentation depth after load removal, and for a soda–lime–silica
glass, this is around 20%.14 Therefore, by measuring the inden-
tation diagonals at every step during polishing, the rate of sur-
face removal was estimated.

(3) X-ray Diffraction Experiments

To evaluate the residual stresses in the crystalline phase, X-ray
diffraction experiments were performed at room temperature in
the Bragg–Brentano mode with a CuKa rotating anode tube.
The recorded angular 2y ranges were from 271 to 361 and from
461 to 521 in 0.021 steps to include the most intense peaks of the
Na4Ca4Si6O18 crystal phase. During the measurements, the sam-
ple was rotated to avoid a possible effect of texture. To correct
for errors in the peak positions, Si powder was deposited on the
sample surface before testing, and was used as an internal ref-
erence. Rietveld refinement of the crystal structure was per-
formed using the GSAS program15 with the EXPGUI
interface.16 The phase was Na4Ca4Si6O18 with a hexagonal
close-packed structure and P312 symmetry space group.

During the refinement process using the GSAS program, the
corrections for sample position errors were performed using the
Si (111) and (220) peak positions. For this purpose, the Si pow-
der lattice parameter was determined by Rietveld refinement
from an X-ray diffraction pattern taken in the 2y range from 201
to 901 at 0.021 steps. The Si lattice parameter and the diffracto-
meter constants were then used as fixed parameters for the
refinement of the Na4Ca4Si6O18 lattice parameter.

Strains and stresses were calculated from the change in the
cell parameters of the crystalline phase Na4Ca4Si6O18 obtained
by the refinement procedure by comparing bulk (stressed) and
powder (unstressed) samples. But there is clear evidence that the
lattice parameter of the crystalline phase in a similar glass varies
with the crystallized volume fraction due to solid solution for-
mation.17,18 Therefore, in the indentation tests, we used a par-
tially crystallized bulk sample ground to powder with a pestle
and a mortar as a stress-free reference sample. Care was taken to
remove the lateral crystallized surface by polishing before the
X-ray experiments.

IV. Results

(1) Indentation Experiments

From the series of indentations with a 2 N load in air, a Vickers
hardness H of 5.970.4 GPa and an average crack length of
4772 mmwas measured. According to eq. (6) of Niihara et al.,13

these values correspond to a fracture toughness of 0.6570.02
MPa �m1/2. This value agrees with previous measurements in
similar glasses.19 A series of 10 indentations with a load of 0.5 N
revealed a similar hardness, 6.170.4 GPa, and a slightly lower
value of indentation fracture toughness, 0.5570.02 MPa �m1/2.

Surprisingly, water had no influence on the measured fracture
toughness. The other series of 2 N indentations in water pro-
duced similar values, a hardness of 5.670.3 GPa and a fracture
toughness of 0.6570.02 MPa �m1/2.

During these tests, indentations in the glass matrix around
the precipitates were performed several times at different dis-
tances and at several angular positions and (within the precision
of the indentation technique) we never observed any specific
angular dependence of the measured residual stresses around a
precipitate.

Figures 2(a) and (b) show typical indentations around a pre-
cipitate and far from its interface. The cracks parallel to the in-
terface were longer than the perpendicular cracks, indicating
that the radial residual stress component is tensile and the tan-
gential component is compressive. A general overview of the
indentation array around a precipitate is observed in Fig. 2(c).
Frommeasurements of crack lengths at several positions around
the precipitates, the residual stress distributions were calculated
according to Eqs. (3a) and (3b) as a function of the normalized
distance a/r and are shown in Figs. 3(a) and (b). The data show
considerable scatter, but there is no significant difference be-
tween the stress profiles of indentations performed in air and
water, confirming the results of the 2 N indentations. The
stresses increase toward the precipitate and are significant only
at a distance comparable with the diameter of the precipitate.
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A mathematical function similar to Eq. (4),
s ¼ soðr=aÞ�3 þ sB, was fit to the stress data obtained in air.
During the fitting process, a 95% confidence band was calcu-
lated around the fitted curve. Any data point outside this band
was excluded and the fitting and the 95% confidence band were
recalculated, and this process was repeated until no data were
outside the confidence band.

The calculated coefficients so and sB were 3172 MPa and
�3.670.8 MPa for data in Fig. 3(a) and �2573 MPa and 271
MPa for data in Fig. 3(b), respectively. The magnitude of stress
at the interface is related to the pressure P predicted by Selsing’s
model according to Eq. (4) for the radial and tangential com-

ponents. Therefore, the stress in the precipitate is predicted to be
in the range of 31–50 MPa.

The series of 1 N indentations performed inside precipitates
of a partially crystallized sample produced an average crack
length of 2573 mm, and on a fully crystallized sample produced
radial cracks of 2275 mm. By using Eq. (3a) and assuming that
the fully crystallized sample is a stress-free sample, a residual
stress of only 10720 MPa is obtained by this method.

The determination of the crack profile as a function of depth
was achieved by polishing the indentations with CeO2. The
amount of surface removal was determined by measuring the in-
dentation diagonals of a large Vickers indentation during polish-
ing and was estimated to be 0.3270.02 mm/min. Typical cracks of
0.5 N indentations are shown in Figs. 4(a) and (b) after 2 and 10
min of polishing. After 10–14 min, the majority of cracks around
the indentations were not visible anymore. The main finding is
that the generated crack is not semi-circular (as assumed in Eq.
(3)), but has an elliptical shape with a length-to-depth ratio of 9.5
as shown in Fig. 4(c). The very significant implication of this ge-
ometry on the determination of residual stresses will be discussed
in ‘‘Calculation of the Crack Geometry Factor.’’

(2) X-ray Diffraction Experiments

The indentation technique allowed us to calculate the stress
distribution in the glass matrix. To confirm the results, X-ray
experiments were performed to estimate the stresses in the crys-
talline precipitates.

Fig. 2. Optical micrographs of 0.5 N Vickers indentations performed in
air used for the determination of residual stresses (a) around a crystalline
precipitate, (b) far from the precipitate, and (c) a general overview of the
array of indentations performed in water.

Fig. 3. (a) Radial and (b) tangential stresses as a function of the nor-
malized distance r/a as calculated using Eqs. (3a) and (3b) using the in-
dentation technique for indentations in air and water, and curve fitting
to air data.
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Figure 5 shows the experimental and the fitted X-ray profiles
and the difference curve for partially crystallized samples in bulk
(Fig. 5(a)) and powder form (Fig. 5(b)). The Si peak positions
are well fitted, but this is not the case for the Na4Ca4Si6O18

peaks. In each figure shown in detail are the (404) and (40�4)
reflections, which superimpose at the same 2y angle. The peak
positions of the fitted curve and the experimental data are dis-
placed by B0.081.

Figure 6 shows the experimental and fitted X-ray profiles for
bulk (Fig. 6(a)) and powder (Fig. 6(b)) fully crystallized samples.
The experimental data are reasonably fit by the simulated curves
and the difference in the peak positions for the (404) and (40�4)
reflections are not observed as they were for the partially crys-
tallized samples.

To analyze the possible existence of texture, we compared the
ratio of intensities of particular reflections among the different
samples. The intensity ratio of the (220) and (404) peaks was
chosen because of their high intensities. The ratio for each sam-
ple was compared with the theoretical value of 1.7 calculated
from data of the ICSD database.20 The values for the powder
and bulk partially crystallized glass–ceramics are 1.7 and 4.2,
respectively. For the powder and bulk fully crystallized samples,
the values are 2.6 and 1.4, respectively. Therefore, a preferred
orientation is observed with different degrees for all samples,
with the exception of the partially crystallized powder sample.

The difference of 0.081 observed for the partially crystallized
samples might have its origin in a small distortion of the unit
cell caused by the Na and Ca off-stoichiometry. Previously, it has
been observed that off-stoichiometry ofNa andCa increases the cell
parameter.17,18 We observe here a possible distortion of the unit
cell leading to a change in crystal symmetry. If the unit cell is hex-
agonal, the (404) and (40�4) peaks are superimposed. However,
if the unit cell is slightly distorted, this distortion may promote
the separation of (404) and (40�4) peaks. Possible transformations
are from a hexagonal to a rhombohedral, monoclinic, or triclinic
structure.21

The average strain of the Na4Ca4Si6O18 hexagonal unit cell
can be defined as:

�e ¼ 2

3

Da0

a0
þ 1

3

Dc0

c0
(7)

where Da0 and Dc0 are the difference between the a0 and c0 pa-
rameters of stressed and stress-free specimens. The average
stress in the crystalline phase for the fully crystallized sample
can then be estimated by Hooke’s law as

s ¼ E�e (8)

Table I shows the refined cell parameters and the calculated
�e and s for the fully crystallized sample assuming an average E
of 81 GPa.5 The estimated residual stress is 3079 MPa.

An alternative method used to estimate the residual stress
because of the differences of the experimental and calculated
(404) and (40�4) profile peaks was simply to fit these peaks with a
single Voigt function taking into account the CuKa1–CuKa2
components and to correct their positions with the aid of the Si
peaks positions. The residual strain ehkl is then calculated from
Bragg’s law differentiation as

ehkl ¼
Ddhkl
dhkl

¼ � Dð2yÞ
2: tan y

(9)

where Ddhkl is the difference between the interplanar distance of
the hkl reflecting plane of the bulk sample and the powder,
stress-free specimen.

To estimate the residual stress for the partially crystallized
sample, a plane-stress state is assumed. Therefore, the calculated

Fig. 4. Optical photographs of 0.5 N indentation on glass polished with Ce2O solution for (a) 2 min, (b) 10 min, and (c) crack dimensions. At 12 min of
polishing, no cracks were visible for this indentation.
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stress is

shkl ¼ �
E

2n
ehkl (10)

The justification of the assumption of plane-stress condition
will be discussed in ‘‘Residual Stress Calculations in the Glass
Matrix.’’

The residual stresses calculated by the fitting of the Voigt
function of the (404) and (40�4) reflections are also shown in
Table I. The residual stress for the fully crystallized sample was
calculated according to Eq. (8) and was 50720MPa, and agrees
with the stress obtained by the Rietveld refinement (Table I).
For the partially crystallized sample, the obtained residual stress
was 130780 MPa. However, the residual stress at the interface
estimated by the indentation technique was only in the 31–50
MPa range.

V. Discussion

The residual stress at the crystal–glass interface measured by the
indentation technique was between 31 and 50 MPa. But a much
higher residual stress of 130780 MPa was estimated by X-ray
diffraction. This last value agrees, within experimental error,
with the average stress of 160 MPa estimated by Selsing’s model
and with earlier measurements of 154750 MPa using X-ray
diffraction.5

It has been observed by X-ray diffraction experiments in a
partially crystallized Li2O–2SiO2 glass–ceramic that the residual

stresses are anisotropic.22,23 Depending on the crystallographic
direction, the residual stresses can either be positive or negative
due to crystal anisotropy. It was also observed that the Selsing
model can predict the variation of the residual stresses reason-
ably well with crystallographic direction if the thermal expan-
sion coefficient for this particular crystallographic plane is used.
In this study, the residual stress was estimated by X-ray diffrac-
tion by the shift in the (404) peak position by comparing bulk
(stressed) and powder (stress-free) samples. This particular high-
intensity reflection measures both the a0 and c0 lattice parameters
variations (Eq. (7)) due to residual stress. Hence, the residual
stress estimated in this way is a good representation of the av-
erage value in the crystalline precipitate.

Another possible variable that affects the measured residual
stress is the glass composition gradient around the precipitates in
samples with relatively small crystalline volume fractions.17,18 In
this particular case, the crystals are richer in Na1 and depleted
of Ca21 when compared with the stoichiometric composition,
while the surrounded glass is consequently richer in Ca21 and
depleted of Na1 when compared with the stoichiometric glass.
In turn, depletion of Na1 in the glass phase around the crystals
changes its thermal expansion coefficient. The glass composition
near the interface can be estimated as 0.7Na2O–2.2CaO–
3SiO2,

18 and using the expressions given in Navarro,24 the glass
thermal expansion coefficient is reduced from 13.7� 10�6 to
12.3� 10�6 K�1 in relation to the 1Na2O � 2CaO � 3SiO2 stoic-
hiometric glass (P2O5 was neglected here). However, this reduc-
tion increases the calculated residual stresses according to
Selsing’s model from 160 to 190 MPa. It is also possible that
this chemical gradient slightly affects the glass elastic modulus,
but this effect is probably small.

Fig. 6. Rietveld plots for (a) bulk and (b) powdered fully crystallized
samples. The intensity observed is represented by full circles, the calcu-
lated intensity and the difference curves are in light gray and black,
respectively.

Fig. 5. Rietveld plots for (a) bulk and (b) powder partially crystallized
samples. The intensity observed is represented by full circles, the calcu-
lated intensity and the difference curves are in light gray and black,
respectively.
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The open issue on which the indentation model is more re-
liable for fracture toughness determination has been a matter of
controversy for some time. Early work favored Eq. (1) given by
Anstis and colleagues.25,26 More recently, Niihara’s expression
(Eq. (6)) has been favored when compared with the Chevron
notch method in glasses.2 But some authors have argued that
indentation methods are not valid.3

Here, we use Eq. (1) because it is the expression originally
proposed by Zeng and Rowcliffe in their method to determine
residual stresses. As the aim of our paper was to test their
method to measure residual stresses in a glass–ceramic, we used
Eq. (3) (that is derived from Eq. (1)). Equation (1) gives a lower
value of Kc (0.3770.03 MPa �m1/2), which would further in-
crease the discrepancy between the predictions of the indenta-
tion method and the measurement by an X-ray diffraction
technique. Low Kc values predicted by Eq. (1) have already
been reported.27–29 Here, Eq. (6) was preferred to estimate Kc

because the resulting value is closer to the toughness measured
using the DCB geometry for a bio-glass.30

Regarding the use of Eq. (1) in the Zeng and Rowcliffe
model, two points should be mentioned: (a) it assumes the re-
lation P� c3/2 and (b) the crack geometry is considered as a 2D
infinite crack at the surface, with a corresponding crack geom-
etry factor of p1/2. The first point was found to be valid for the
experimental conditions of our work: the relation P� c3/2 is in-
deed obeyed above 0.2 N in a similar bio glass–ceramic.31 For
the second point, we propose a more realistic crack geometry
factor based on a semi-elliptical surface crack.

Kese and Rowcliffe32 have used a cube-corner indenter to
estimate the residual stress field around a large Vickers inden-
tation in soda–lime glass. The crack geometry was different than
those assumed for Vickers indentation in earlier studies8,9 and a
new crack geometry factor was calculated for this method using
a cube-corner indenter. The calculated stresses in the cube-cor-
ner experiments were a factor of 2–4 higher than the stresses
calculated previously8–9 and this was partially attributed to the
varying stress field acting at the crack faces along the radial di-
rection, and a difference in the cracks generated by the different
indenters.

To the best of our knowledge, the nanoindentation technique
has been used by only one group to estimate the residual stress
field in a partially crystallized glass–ceramic.33 However, the re-
sults were affected by the varying stress field along the radial
direction and the crack length chosen to probe the stress field.
The estimated stresses were much lesser than the expected (cal-
culated and measured by other technique) values.

In order to thoroughly test the applicability of the indentation
method of ZR for glass–ceramics, and in an attempt to explain
the discrepancy observed in Soares and Lepienski,33 in this ar-
ticle we investigated: (i) the effect of the shape of the indentation
crack; and (ii) the development of a model that takes into
account the fact that in the indentation method the precipitate
is sitting on the sample surface (not fully embedded in the glass
interior), and the hemisphere shape of the precipitate; two issues
which were not considered in Selsing’s model.

(1) Calculation of the Crack Geometry Factor

The measured crack geometry of 0.5 N indentations shown in
Fig. 4 is not semi-circular, but has a semi-elliptical shape with a
length-to-depth ratio of 9.5. In this case, if we assume this
length-to-depth ratio to be the same for the indentation cracks
around the precipitates, the stress intensity factor at the crack tip
is

Kc ¼ wr
P

c
3=2
1

þ F�stc
1=2
1 (11)

where the new crack geometry factor F� for an semi-elliptical
crack with length 2c and depth d is34

F� ¼
ffiffiffi
p
p

E d
c

� �F d

c
;f

� �
(12)

and

F ¼M1gff

M1 ¼
ffiffiffi
d

c

r
1:13� 0:09

d

c

� �

g ¼1þ ð1� sin2 fÞ
10

ff ¼
d

c

� �2

cos2 fþ sin2 f

" #1=4

E
d

c

� �
ffi 1þ 1:464

d

c

� �1:65
" #1=2

for
d

c
	 1

In the above expressions, the crack depth is assumed to be
much smaller than the sample thickness. As we are considering
the point where the crack front meets the surface, f ¼ 0,
g ¼ 1:1, ff ¼

ffiffiffiffiffiffiffiffi
d=c

p
and the new crack geometry factor is:

F� ¼ d

c

� �
1:243� 0:099

d

c

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

1þ 1:464 d
c

� �1:65
s

(13)

The tensile and compressive residual stresses are given by Eq.
(3) are rewritten as

sr ¼ Kc
1� ðc0=c1Þ3=2

F�c1=21

ðfor tensile stressÞ (14a)

Table I. Residual Stresses Calculated from Lattice Parameters Obtained by Fitting the Experimental X-Ray Patterns with the
GSAS Program for Powder and Bulk Forms of Fully Crystallized Samples and from Corrected 2h Angles for the (404) and (40�4)

Reflections for Powder and Bulk Forms of Partially and Fully Crystallized Samples

Sample Type a0 (Å) c0 (Å) �e(%) s5Ee

Fully crystallized Bulk 10.472770.0002 13.132470.0006 0.0470.01 3079 MPa
Powder 10.468570.0002 13.128170.0004

2y (1) e404 (%) s404 5Ee s4045�Ee/2n

Partially crystallized Bulk 48.74370.007 �0.0970.05 130780 MPa
Powder 48.7070.02

Fully crystallized Bulk 48.77170.002 0.0670.03 50720 MPa
Powder 48.8070.01
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sr ¼ �Kc
1� ðc0=c2Þ3=2

F�c1=22

ðfor compressive stressÞ (14b)

For our crack geometry, d/c is 0.21 and the crack geometry
factor F� is 0.4370.04. The data shown in Figs. 3(a) and (b) are
re-plotted with the corrected F� and residual stresses given by

Eq. (14) in Figs. 7(a) and (b). A function s ¼ soðr=aÞ�3 þ sB is
also fitted to the stress data obtained in air.

The constant s0 is 127725 MPa for the radial stress and
�102717 MPa for the tangential stress and is equal to the
magnitude of the stress at the interface. Therefore, it can be used
to estimate the pressure P inside the precipitate according to Eq.
(3). The radial stress predicts a hydrostatic stress inside the pre-
cipitate equals to s0, 127725MPa, and is in agreement with the
stresses predicted by Selsing’s model and the value measured by
X-ray diffraction.

The tangential stress data predict a stress P inside the pre-
cipitate equal to�2s05 204734MPa. This value is higher than
the predicted stresses by Selsing’s model and X-ray diffraction
experiments. One possible reason is that these cracks are short,
and it is well established that radial cracks should be longer than
2.5b, where b is the half-impression diagonal, for the method (of
estimating fracture toughness by indentation) to be valid.13,25

Another possible reason is that these cracks in a radial direction
are subjected by a stress gradient along their length. Portions of

the crack closer to the precipitate experience higher compressive
stresses than those farther apart. Meanwhile, the tangential
cracks experience a constant stress along their length, allowing
a more reliable stress measurement.

(2) Residual Stress Calculations in the Glass Matrix

Selsing’s model assumes that the spherical precipitate is com-
pletely surrounded by the matrix. The uniform residual stresses
P predicted by the model inside the precipitate shows a 1/r3 de-
pendence outside. However, the model has some limitations
when applied to our experiment. First, the precipitates are not
spherical, they are hemispherical, and are located at the sample
surface. The free surface relaxes some stress components and
consequently the actual stress tensor might be different from
those calculated by the Selsing’s model. Therefore, a more
suitable theoretical framework should be used so that the
hemispherical precipitates and their location are taken into
account.

Mindlin and Cheng35 developed equations for the displace-
ments of a center of dilatation in a semi-infinite matrix and ap-
plied them for a spherical inclusion near the surface. Their
results were further developed by Hu,36 based on Mindlin and
Cheng’s displacement equations, who calculated analytically the
strain and stress tensors for a parallel-epipedic thermal inclusion
in a three-dimensional half-space.

According to Hu,36 the stresses produced at point (x, y, z) by
a parallelepipedic strain nucleus at (x0, y0, z0) are, in the coordi-
nate system defined in Fig. 8:

sxx ¼2GPfr�31 þ 3� 8nð Þr�32 � 3�x2r�51 � 3½ð3� 4nÞ�x2

þ 2zẑ� 4nẑ2�r�52 þ 30zẑ�z2�x2r�72 g
syy ¼2GPfr�31 þ ð3� 8nÞr�32 � 3�y2r�51 � 3½ð3� 4nÞ�y2

þ 2zẑ� 4nẑ2�r�52 þ 30zẑ�z2�y2r�72 g
szz ¼2GPfr�31 � r�32 � 3�z2r�51 þ 3ẑðẑ� 6zÞr�52 þ 30zẑ3r�72 g
sxy ¼� 6GP�x�y½r�51 þ ð3� 4nÞr�52 � 10zẑr�72 �
sxz ¼� 6GP�x½�zr�51 þ ð2zþ ẑÞr�52 � 10zẑ2r�72 �
syz ¼� 6GP�y½�zr�51 þ ð2zþ ẑÞr�52 � 10zẑ2r�72 �

(15)

where

�x ¼x� x0

�y ¼y� y0

�z ¼z� z0

ẑ ¼zþ z0

r21 ¼�x2 þ �y2 þ �z2

r22 ¼�x2 þ �y2 þ ẑ2

P ¼DaDT ð1þ nÞ
4pð1� nÞdx

0dy0dz0

(16)

Fig. 7. (a) Radial and (b) tangential stresses as a function of the nor-
malized distance r/a calculated using Eqs. (14a) and (14b) using the in-
dentation technique for indentations in air and water, and curve fitting
to air data.

Fig. 8. Schematic representation of a hemispherical inclusion at the
surface and the coordinate system.
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where Da is the thermal expansion difference between the glass
and the matrix, DT is the temperature difference, and n and G
are the Poisson ratio and shear modulus, respectively.

This model was applied by dividing the hemispherical inclu-
sion in small elements dx0dy0dz0. The total stresses at a particular
point were obtained by numerical integration over the total vol-
ume inclusion. In Hu’s model, it is assumed the elastic constants
of the precipitate and the matrix are the same. For the stress
estimation, the elastic constants of the glass and crystal were
assumed as n5 0.27, am 5 13.7� 10�6 K�1, ap5 20.5� 10�6

K�1, DT5 310 K, and G5 31.9 GPa.
The conditions assumed for the numerical calculations

were as close as possible to the experiments. The hemispherical
precipitate radius was 180 mm and each element of the grid was a
cube of 10 mm� 10 mm� 10 mm. The stresses were estimated up
to a depth of 40 mm, i.e. the depth probed by the indentation
technique.

The results are shown in Fig. 9. The stress state can be defined
as a plane-stress condition. The component normal to the sur-
face szz is null near the surface as are the other shear stresses.
The radial component sxx is tensile and decreases with depth.
The tangential component syy is compressive and increases
slightly with depth. All the shear stresses are approximately
zero at all depths.

The curves in Fig. 9 can be extrapolated towards the interface
(x5 a) assuming a power law function. In this case, the radial
and tangential components sxx and syy close to the crystal/glass
interface are shown in Fig. 10. The radial component is 270MPa
nearby the surface and decreases with the increasing depth. The
tangential component does not vary with depth, being approx-
imately �75 MPa. For comparison, the predicted average re-
sidual stress by Selsing’s model is 160MPa. Near the surface, the
radial component is higher than that predicted by Selsing’s
model. Therefore, in this ‘‘surface’’ model, the radial stress com-
ponent in a crystal on a glass surface is approximately 70%
larger than the radial stress produced by a spherical precipitate
deep inside the glass matrix. The tangential stress syy is not
affected.

VI. Conclusions

Residual stresses in the glass matrix around crystalline precip-
itates in a bio glass-ceramic were determined by the Vickers in-
dentation technique of Zeng and Rowcliffe. If the crack
morphology is assumed as surface line cracks (as in the origi-
nal model), the estimated stress is much lower than the stresses
measured by X-ray diffraction (in the crystals) and predicted by

Fig. 9. Magnitude of stresses with distance from the precipitate at
different depths of (a) 5 mm, (b) 10 mm, (c) 20 mm, and (d) 40 mm.

Fig. 10. Variation of sxx and syy with a depth close to the interface at
x5 180 mm.
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Selsing’s model. A correction for the crack geometry factor as-
suming a semi-elliptical crack shape restores the agreement be-
tween the experimental residual stresses and the values measured
by XRD and theoretically predicted. Thus, if a proper account
of the real crack geometry is taken, the indentation technique of
ZR can be successfully used.

In addition, a numerical model for the calculation of residual
stress that takes into account the hemispherical shape of a crys-
talline precipitate at a free surface was developed. Estimates
show that the radial component of the residual stress is en-
hanced by 70% near the sample surface in comparison with the
internal residual stress calculated by Selsing’s model, whereas
the tangential stresses are not affected.
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