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Abstract

The present study was undertaken to test the validity of existing models for: (i) the residual internal stresses which arise
due to thermal and elastic mismatch in duplex systems; and (ii) the critical particle diameter for spontaneous cracking. The
specimens studied were bulk nucleated, partially crystallized 17.20Na,0-32.09Ca0-48.12810,~2.59P,0; (mol%) glasses.
The residual stress was determined by an X-ray diffraction technique for a particular set of A&/ planes. The crystal diameters
and volume fractions crystallized were measured by an image analyzer system. The experimental residual stress was in
agreement with the calculated value within the measurement errors. On the other hand, the theoretical value of the critical
particle diameter, calculated by an energy balance approach, was more than ten times smaller than the experimental value,
suggesting that the semi-spherical crack assumed in the model does not hold for our system. A preliminary fitting with a

fracture mechanics model was also carried out,

1. Introduction

The mechanical behavior of multi-phase brittle
materials may depend heavily on the level of internal
micromechanical stresses which arise upon cooling,
due to thermal and elastic mismatch between the
constituent phases [1]. These stresses have always
been of interest from both strengthening and weaken-
ing perspectives [2]. Typical examples are glass-
ceramics, the microstructures of which comprise one
or more crystal phases dispersed in a glassy matrix.
In this paper, we review previous research on inter-
nal stresses in glass matrix composites and the avail-
able models to calculate those stresses. An experi-
mental test of the models using a partially crystal-
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lized soda-lime—silica glass is presented for the first
time. Additionally, the critical particle diameter for
spontaneous cracking is compared with experimental
values.

2, Theory

2.1. Residual stresses

In 1957, Eshelby [3] proposed a technique, later
complemented by other authors, to calculate the
stress field around an anisotropic grain embedded in
a matrix. The calculation takes into account the
geometry of the inclusion and the (tensorial) proper-
ties of the inclusion and of the matrix. Apart from
the challenging computations, the main difficulty is
that crystal-axis-dependent elastic and thermal prop-
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Fig. 1. Internal pressure, P; as a function of distance, X, from a
particle of radius, R.

erties are difficult to determine and are seldom avail-
able. However, if the inclusion is spherical and
isotropic, the radial tension in the matrix, just at the
inclusion/matrix boundary, reduces to the equation
derived by Selsing [4]: '

0, =P=AaAT/K,, (1)

where K, =(1+,)/2E, +(1-2v)/E, E and
v being the elastic modulus and Poisson ratio, and
the subscripts, m and p,.refer to the matrix and
particle, respectively, A is the thermal expansion
mismatch and AT is the difference between the
temperature at which the glass ceases. to flow on
cooling (=7,) and the ambient temperature. The
circumferential stress, o, is equal to one-half of P,
the hydrostratic pressure on the particle. The stresses
decrease with the third power of the distance from
the particle /matrix boundary, as illustrated in Fig. 1.
At the interface (x=R), 0. =P.

For a system containing several particles in a
matrix, as in real materials, Eq. (1) should still hold
if the stress fields around each particle do not over-
lap. This situation is expected to be valid if the
volume percentage of the second phase does not
exceed = 15%.

2.2. Critical particle diameter

Residual micromechanical stresses may lead to
spontaneous fracture of the matrix, ‘as commonly
observed in practice in many materials [S]. At least
two models are available to- calculate the critical
particle diameter, D, to induce self-cracking, the

energy balance [5] and the fracture mechanics model

[6].

2.2.1. The energy balance model

Davidge and Green [5] developed a model that
assumes spontaneous cracking of the matrix when
the stored elastic energy, U,, exceeds the energy
associated with the creation of two new surfaces, U,.
The elastic energy is the volume integral of the
product between the stress and strain fields. Thus,
for-an isolated particle in a infinite matrix:

U =7K.0’D°/4, (2)

where D is the particle diameter and o, is the
residual stress, given by Eq. (1).

In the derivation of U, the authors assume that
the fracture surface is a semi-sphere and that the
surface energy of the particle, v, is equal to that of
the matrix. In this case,

U, =mD%. (3)
Additionally, it is assumed that the formation of a

semi-spherical crack releases only half of the stored
deformation energy, U,, leading to fracture when

U/2=U,. (4)

The lower limit of Eq. (4) for the critical diame-
ter, D, is

D, =8v/K.a. (5)

2.2.2. The fracture mechanics model

" The fracture mechanics model, proposed by Ito
[6], follows from the methodology suggested by
Evans [7]. The fracture surface is assumed to involve
the particle, as shown in Fig. 2. This model is much
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Fig. 2. Crack in the particle /matrix interface following the frac-
ture mechanics model of Ito [6].
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more detailed than the energy model, and the critical
diameter for spontaneous fracture is given by

D, =[03K,E,sin 0(2—sin )] " (K./a)%,

(6)

where K is the critical stress intensity factor of the
matrix and o is the ratio of the semi-spherical crack
size and the particle diameter. Ito [6] calculated
typical values of that parameter (w ~ 0.3), using the
data of Davidge and Green [5], for two hot-pressed
glasses containing 10 vol.% thoria particles.

3. Literature review

Fulrath [8] used model systems produced by vac-
uum hot compaction to study internal stresses in
materials containing oxide glass matrices and one
crystalline phase (a-Al,0, or synthetic sapphire).
Effects of compaction temperature, time, volume
fraction and crystal particle size were presented. His
work showed that the development of internal stresses
in glass—crystal composites depends on processing
time and temperature and appears to be closely
related to the interfacial bond formation between the
glass and the crystal phases. The higher the internal
stresses, the lower the fracture strength of the ce-
ramic bodies for a given particle size. The measured
internal strain was dependent on particle size under
identical fabrication procedures. This dependence is
not consistent with Eq. (1), however; their materials
had a high volume fraction of crystals (50%) and,
thus, the interaction among the stress fields of the
particles could not be neglected.

Davidge and Green [5] measured the strengths of
various glasses, having a range of expansion coeffi-
cients, containing 10 vol.% thoria spheres, with di-
ameters from 50 to 700 p.m. They observed a reduc-
tion in strength only for spheres larger than a certain
size and noted that the effect due to thermal expan-
sion mismatch is more important than the elastic
mismatch. When the expansion coefficient of the
spheres was greater than that of the glass, circumfer-
ential cracks formed around the spheres, but only
when the sphere diameter was greater than a critical
value. They also calculated an approximate value for
the critical diameter through Eq. (5). The experimen-

tal critical particle diameters, D,, were 1.6 to 1.9
times larger than the calculated values. No depen-
dence of the stress magnitudes on particle diameter
was found, in accord with Eq. (5). :

In his extensive review on "Fracture of Brittle
Matrix and Particulate Composites", Lange [9] made
interesting observations about the work of Davidge
and Green [5]. According to Lange, Davidge and
Green’s research was centered on confirming the
observation of Binns [2], that cracks only developed
around the larger particles, and explaining these
results in terms of the total strain energy that devel-
ops within and around the particles. He also pointed
out that, although the stress magnitudes are indepen-
dent of particle size, the total stored strain energy
depends on the volume of the material under the
influence of stress, which, in turn, depends on the
particle size. Thus, the larger the particle, the larger
the stressed volume, both within the particle and
around the particle, and the larger the stored strain
energy associated with the particle. Concerning the
critical particle size model of Davidge and Green,
Lange concluded that, as the calculated values were
underestimated, their model can be used only as an
approximation of the critical particle size required to
form spontaneous cracks. Despite this constraint,
their concept indicates that cracks induced by resid-
ual thermal stresses can be eliminated by reducing
the particle size of the dispersed phase of a given
composite.

The strengthening mechanism of brittle matrices
has been studied by Borom et al. [10]. They worked
with 8i0,-Li,0-Al,0,-K,0-B,0,-P,0, glass-
ceramics that had strengths two to three times higher
than those of the parent glass: Their samples con-
sisted of 20~95 vol.% of fine grains of a crystalline
phase in a glass matrix. They correlated strength
with microstructure and attributed the two-to three-
fold increase in the strength after heat treatment to
the development of a variable field of compressive
stress in the glass matrix.

Later, Borom [11] presented a discussion about
the various theoretical possibilities for dispersion
strengthening. These explanations related strength
enhancement in brittle materials either to flaw size
limitation by the small interparticle spacing or to
increase in the system modulus as a result of the
presence of a higher modulus dispersed phase. Based
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on the mechanical strength measurements of his
previous work [10], Borom concluded that the theo-
retical explanations mentioned above are inadequate.
He confirmed his previous results, saying that the
strength improvement in glass-ceramics after crystal-
lization, in excess of that produced by modulus
enhancement, results from the creation of compres-
sive stresses in the glass matrix due to the thermo-
mechanical mismatch between the crystals and the
matrix.

Internal stresses in partially crystallized glasses,
based on B-eucrypite and 3-spodumene solid solu-
tions, have been measured by Zevin et al. [12] using
an X-ray diffraction (XRD) technique. They found
that the measured stresses were much smaller than
the values calculated by Eq. (1). According to these
authors, this discrepancy was due to the formation of
a crack network in their glass-ceramics. No informa-
tion was given concerning the critical particle diame-
ter.

The fracture behavior of glass matrix /glass parti-
cle composites has been described by Miyata et al.
[13]. They studied two-phase materials consisting of
spherical glass particles dispersed in four different
soda-lime—silica glass matrices, having thermal ex-
pansion coefficients equal to or greater than the
expansion coefficient of the glass beads. No microc-
racking was observed after cooling for the system
with matching thermal expansions of the phases.
Microcracks were observed only around particles
having a large Aa (@ — ®peads) and when the
particles were adjacent to each other. The authors
used the Davidge and Green model for the critical
particle diameter analysis but did not present any
results. Only certain considerations about the rela-
tionships between the critical particle diameter and
the fracture toughness value were presented. They
concluded that the use of particle sizes near D,
enables microcrack toughening to be achieved with
as small as possible strength reduction.

Levy et al. [14] studied the effect of microstresses
on the strength of some two-phase materials. For a
glass matrix having quartz crystals varying from 3 to
300 wm in size, they found that the experimental
value of the residual strain decreased as the size of
the crystals increased. They explained this decrease
by the development of microcracks due to the exis-
tence of crystals larger than the critical size. Other

than this supposition, they did not present calcula-
tions for D, where, supposedly, the residual stress
dropped.

Recently, Khodakovskaya [15] carried out experi-
mental measurements of residual stresses in glass-
ceramics and analyzed their relationship to mechani-
cal behavior. This author investigated materials con-
taining 75-95 vol.% of different crystal phases
(cordierite, willemite or nepheline), as well as sin-
tered glass-ceramics containing 10-50% of crystal
phases (quartz, corundum, rutile, etc). The values of
residual microstrains in the crystals were essentially
smaller than would be expected on the basis of Eq.
(1). This author suggested that microstress relaxation
takes place through microcrack development because
the strength of his glass-ceramics fell sharply with
increasing stress relaxation.

As demonstrated in this brief summary of previ-
ous research, controversy remains concerning inter-
nal stresses and critical particle size. In Refs. [8] and
[12], the experimental values of internal stresses
were dependent on the particle size, but in Ref. [5]
they were not. In addition, the experimental values
for the internal stresses were smaller than the calcu-
lated ones (using the Selsing formula) in Refs. [10]
and [13]. Concerning the critical particle diameter,
D,, only Davidge and Green [5] performed calcula-
tions which resulted in underestimated values for D,.
Therefore, the aim of the present study is to test the
validity of existing models for the residual internal
stresses and critical particle diameter in a partially
crystallized glass, under conditions in which the
models are expected to apply for the first time.

4., Materials and methods

A 17.20Na,0-32.09Ca0-48.125i0,-2.59P, 05
(mol%) glass was prepared by melting a homoge-
neous mixture of reagent-grade Na,CO;, CaCOs,,
SiO, and P,Oy at 1400°C for 3 h in a Pt crucible.
This composition was chosen because it is the basis
of a bioactive glass, developed by Professor L.L.
Hench in the 1970s, and shows volume nucleation
allowing us to produce a series of specimens with
controlled microstructures. The melt was then cast
between two cold steel plates, with an estimated
cooling rate of 400°C/min. To obtain partially crys-
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Table 1

Largest crystal diameters, D, ,,,

function of treatment time

and volume fractions, V., as a

> Vpo

Sample Dax |4
(um)

A 650 0.05

B 766 0.07

C 900 0.06

D 985 0.12

tallized glasses (glass-ceramics), some specimens
were submitted to an isothermal treatment at 840°C
for periods varying between 28 and 39 min (28 min:
sample A; 33 min: sample B; 36 min: sample C and
39 min: sample D). A fully crystallized sample, used
for thermal and elastic constant measurements, was
obtained by nucleating one specimen at 571°C for
200 h and then heating it at 670°C for 25 min to
allow the nucleated crystals to grow (sample E).

4.1. Microstructures and physical properties

The maximum crystal diameters and volume frac-
tions of the crystallized phase, V,, were measured
using an image analyzer system. The results are
presented in Table 1. The typical errors in these
measurements were about 10%.

Fig. 3 shows the thermal expansion data for the
glass and totally crystallized samples obtained by
thermal analysis (STA 409 Netzch) equipment. To
obtain the difference of thermal expansion coeffi-
cients, A @, of both samples, the curves presented in
Fig. 3 were fit in the following way: for the glass
curve, a third order polynomial fitting was used in

0.01 . ‘
_°| Glass-Ceramic—,«"
\ <
— &
= P4
0.005 | et 1
#5e"  Glass
Rl
edff:f"
O L 1]
250 367 483 600
T (°C)

Fig. 3. Thermal expansion curves for the glass and fully crystal-
lized samples.

the full temperature range (260-570°C) while, for
the glass-ceramic curve, a third order polynomial
fitting was used between 260°C and 470°C and a
linear polynomial fitting between 470°C and 570°C.
As Aw is not constant in the temperature range of
this work, it was necessary to integrate, as described
below:

AaAT = [£°(dl, /L, —dl /L))
+iiy (dl,/Ly,— dlp/Lp)
= AP(T)IZ° + AP,(T)Ii%0,

where APy =P, —P,, and AP,=P, — P, are
the polynomial functions (m = glass matrix and p =
glass-ceramic). From fitting the curves presented in
Fig. 3, the polynomial functions found are

P, =4.16e7°T—6.02¢78T? +5.19¢~ 73,
P, =7.3%7T~1.77¢7"T? +2.02¢71°T?,

and
P, =4.16e7°T—6.02¢"3T% + 5.19¢e ' 73,
P,,=2.49¢7°T,

where e ™" = 107",

The modulus of elasticity and the Poisson ratios
of the glass and fully crystallized glass-ceramic were
obtained using a pulse-echo technique. Each speci-
men was measured three times. Experimental values

are presented in Table 2.

4.2. Residual internal stresses

The diffraction method for measuring strains and
stresses in crystalline solids has been in use for some
time and is well established [8,16,17]. The method
relies on using the crystal lattice as an absolute strain
gauge [17]. XRD is based on Bragg’s Law (Eq. (7))
which relates the interplanar spacing of atomic

Table 2
Physical properties of glass and fully crystallized glass-ceramic
Property Glass Glass-ceramic
(m) ®
E (GPa): 81+8 96+9
v: 0.27£0.02 0.24+0.02
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planes, d, to the angle peak position, 6, of a diffracted
beam of monochromatic X- rays [18]:

nA=2dsin 9. (7)

The residual strain determined by XRD is based
on the displacement of the peaks in the XRD pattern,
i.e., on the relative change in the interplanar distance
of the crystalline phase under study. Differentiating
Bragg’s Equation, the following ‘expression is ob-
tained [18]:

Ad,,,/dy, = —0.5A(26) cot 8, . (8)

where A(26) is the displacement of the diffraction
peak caused by the strain in the crystal, 20 is the
angle between the direction of the primary beam and
reflecting plane and 4, is the interplanar distance
related to the hkl reflecting plane. Comparing this
interplanar spacing with that of a stress-free speci-
men (usually a finely ground, stress relieved, pow-
der) gives the strain normal to the hkl planes used
for the measurements. The relative deformation can
be assessed from the displacement of the diffracted
peaks as follows: '

& = Ddprt/ Ay (9

where &, is the relative deformation of the crystal
normal to the plane, kkl. The experimental residual
internal stress can now be determined by Hooke's

Law: ‘ »
azexp = 8hk1E’ ' (10)

where ¢, is the measured deformation and E is the
modulus of elasticity of the crystals, here assumed to
be similar to the average value for all [Akl] direc-
tions. . .

X-ray measurements were made using a conven-
tional diffractometer Zeiss model HGZ64C under the
following conditions: CuKa radiation, fine focus
X-ray tube operated at 25 mA and 40 kV and a
scintillation counter as detector. Data were collected
on the glass-ceramic samples over the range of
48.0-49.0° (two theta) using a 0.02° two theta step
interval and a step time sufficient to give a good
signal to noise ratio. This angular range corresponds
to the interplanar spacing, d,,, = 404. Only results
for the (404) interplanar spacing are quoted due to
experimental limitations. In this work, we dealt with
quite small volume percentages of crystals (5-12%)

Table 3 ‘
Measured X-ray. diffraction values and experimental internal strain
and stress using Egs. (8) and (10)
Sample Dinax 20

(bm)  (£0.02°)

‘Sexp %xp
(x107%)  (MPa)

A 650 4874 1.07 102
B 766 48.70 2.14 205
C 900 48.74 1.07 102
D 985 43.72 1.61 154
E - 48.80 0.00 © 000

and, thus, the diffracted intensities were quite weak.
Additionally, we wanted diffraction peaks located at
the highest angles to improve the accuracy of the 26
measurements. Under these constraints, the only fea-
sible measurements for our system were at 26=
48.8°, which corresponds to (404). To obtain the
interplanar spacing of the stress-free specimen, XRD
measurements of the ‘fully’ crystallized specimen
(sample E) were performed in a finely ground power
(free of residual stresses). We assumed that the small
percentage of residual glass, that probably remains in
the so-called ‘fully’ crystallized sample, does not
affect significantly the results because the large ma-
jority of particles, or at least a large number of faces
of the powder grains produced by grinding, should
not be surrounded by a glass layer. A correction of
the diffraction peak position was made by measuring
the location of the diffraction peaks of pure silicon
powder incorporated into the sample as an internal
standard. The'results are presented in Table 3 with
the internal residual strain and stresses calculated
using Egs. (8) and (10).

If one takes into account the error in the 26 angle
measurements (£0.02), an average value of 48.72 +
0.02 is found, which corresponds to a mean value of
154 MPa for the experimental residual stress, The
estimated error in that value is about 30%.

5. Calculation of residual internal stresses, o,
and critical particle diameter, D,

The stress at the particle /matrix interface can be
calculated using the Selsing formula, Eq. (1). In this
case, we consider a temperature range in which the
matrix plasticity is negligible (taken to be from T, to
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260°C because the thermal expansion mismatch is
negligible below 260°C). Using experimental values
of the physical parameters v, = 0.27, y,=0.24, E|

=8.1 X 10* MPa and E, ='0.6 % 10* MPa in Eq
(1), we found that o, = 160 MPa, in excellent agree-
ment with the average experimental value (154 MPa).

This agreement confirmed ‘a posteriori’ the assump-’

tion that the small amount of residual glass in the
‘fully’ crystallized specimen did not affect the mea-
surements.

The critical particle diameter, D,, can be calcu-
lated using the two models described in Section 1:
the energy balance model and the fracture mechanics
model.

In the energy balance model, the critical dlameter
can be obtained by Eg. (5). Using the published
value of the surface energy of the gldss, y=3.47
J/m?, the measured value of the elastic constant,
K.=1327x107° MPa™', and the experimental
value of the residual stress, o, = 154 MPa, one finds
D_ =88 pm, :which is much smaller than the crystal
sizes, Dp,,, shown in Table 1,i.e., no cracking was
optically observed for crystals up to 985 pm. Indeed,
a residual stress of about 154 MPa exists in these
specimens; hence, no cracking developed.

Since our data are fully consistent, as shown by
the previous calculations for g, the most probable
explanation for this large discrepancy is that the
crack shape and size (semi-sphere) assumed in the
derivation of the energy model [5] does not hold for
our glass-ceramic. Another possibility is that an ef-
fective (unknown) surface energy for cracking the
glass /crystal boundary should be used in the calcu-
lations instead of the glass fracture energy, v

In the fracture mechanics model, the critical parti-
cle diameter for spontaneous fracture is given by Eq.
(6). Due to the fact that D, depends on o (an
unknown parameter, a priori), we cannot estimate
D,. Additionally, even with D_, =985 pm (the
largest crystal attainable with the constraint of keep-
ing a low volume fraction crystallized), we did not
observe any crack in the specimens. However, using
known values of K, a;, K, and E_ for our sample,
we can plot D, versus w and, thus, observe which w
value corresponds to 985 pm. Fig. 4 shows the
log D, versus o plot for @ varying from 0.01 to
1.00. Thus, we note that o should be smaller than
0.025, for log980 =3.0. This is clearly an upper

4 t 1 ¥ il
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Energy Balance Value
. : :
0 0.2 0.4 0.6 0.8 1
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Fig. 4. Logarithm of the critical particle diameter versus w, the
ratio of the semi-spherical cracksize to particle diameter.

bound and is much smaller than the value obtained
by Ito [6] for Davidge and Green’s hot-pressed com-
posites data (w ~ 0.3). Thus, if o is strongly depen-
dent on the material used, the fracture mechanics
model has no predictive power. To generalize the
findings of this article, we are presently testing the
energy model, as well as the values of @ for other
glass-ceramics in our laboratories.

6. Conclusions

Partially crystallized 17.20Na,0-32.09CaO-
48.128i0,-2.59P,0; glasses were studied. The ex-
perimental residual stress around the crystals, deter-
mined by an XRD technique, was in agreement with
the calculated value and did not depend on particle
diameter, as predicted by theory. On the other hand,
the theoretical value of the critical particle diameter
for spontaneous cracking, calculated by a energy
balance approach, was more than 10 times smaller
than the experimental value. A possible explanation
for this discrepancy is that semi-spherical crack as-
sumed in the energy model does not hold for our
glass-ceramic. Another possibility is that the effec-
tive surface energy for cracking the glass/crystal
boundary is substantially larger than the glass frac-
ture energy. The mathematical fit to a fracture me-
chanics model obtained for our glass-ceramic did not
match a previous fit obtained with a hot-pressed
glass matrix composite. Thus, the fracture mechanics
model also appears to fail to predict correctly the
critical diameter for spontaneous fracture. In order to
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generalize (or not) the present conclusions, these
calculations are now being extended to other glass-
ceramic systems.
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