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Two approaches were employed to calculate the noniso-
thermal crystallisation of undercooled liquids on both
heating and cooling, the first using the concept of
additivity and the second using a rigorous expression. It
is indicated that the additivity approximation is strictly
valid in two limiting cases, (i) site saturation and (ii)
complete overlap of nucleation and growth curves.
Numerical calculations were performed for SiO, glass,
which has well separated nucleation and growth curves,
and significant (orders of magnitude) differences were
found between the two methods for the prediction of the
volume fraction crystallised. Despite this discrepancy,
the calculated critical cooling rates differ by less than an
order of magnitude. It is also demonstrated that the
overall crystallisation produced on heating is many
orders of magnitude higher than that on cooling (for
equal dT/dt) due to the fact that the maximum nucle-
ation rate occurs at a much lower temperature than the
maximum crystal growth rate.

During the past several decades the quantitative
evaluation of glass forming ability of materials has
become possible as a result of the kinetic viewpoint of
glass formation adopted by Turnbull? and
Uhlmann.” The crucial element in this approach is
the calculation of the volume fraction crystallised, x,,
as a function of cooling rate. If for a given cooling path
the volume fraction crystallised does not exceed a
critical value, then one considers glass formation to be
in evidence via this thermal path.

The calculation of the volume fraction of glass
crystallised as a function of thermal history is also a
central issue in the fabrication of glass ceramics.®® In
this case, however, glass formation is usually not
problematic because the issue is the computation of
volume fraction of crystals produced during the heat-
ing of the glass.

The feasibility of the kinetic method hinges upon
the knowledge of certain kinetic and thermodynamic
parameters (e.g. the crystal nucleation and growth
rates, temperature dependence of the viscosity, etc.),
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and the functional relationship between x, and these
parameters. Herein, only the latter aspect of this
method will be considered.

The simplest approach to the evaluation of glass
forming ability is by the wuse of time-
temperature-transformation (T-T-T) diagrams.’”
Such diagrams relate the times required to produce a
given volume fraction of crystals for a variety of
isothermal heatings. The critical cooling rate for glass
formation is taken as that cooling curve which is
tangent to the T-T-T diagram corresponding to a
critical volume fraction of crystals transformed. It is
known that this critical cooling rate is a conservative
upper limit to the actual required rate.

Recently, more sophisticated techniques have
been employed for the assessment of glass forming
capability and the computation of volume fraction
crystallised. Notably, these techniques include con-
tinuous cooling diagrams and the method of ad-
ditivity.®® Although a precise expression for the vol-
ume fraction transformed has been derived,’® its use is
limited due to its complexity. Hence, there has been
strong incentive to derive simple, yet accurate,
methods for calculating the volume fraction crys-
tallised for nonisothermal transformations.

The principle of additivity is a particularly attrac-
tive method for the calculation of x, due to its sim-
plicity. For example, MacFarlane has employed this
method to calculate critical cooling rates for glass
formation in SiO, and two metal alloy com-
positions.®

This paper presents an examination of the areas in
which the additivity assumption is valid, giving com-
parisons of the predicted values of x, (for both cooling
and heating) for the crystallisation of SiO, employing
both the concept of additivity and also the exact
expression given by Hopper et al'® In addition, a
discussion is presented on the different formulae which
result for x, depending upon whether additivity is a
result of site saturation or of the similarity of the
temperature dependence of the nucleation and growth
rates. Finally, the sensitivity of the predicted critical
cooling rate for glass formation to the method of
computation of x, is examined.
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Theory

General expression for volume fraction transformed

A general expression for the volume fraction of
material crystallised as a function of time for noniso-
thermal heating paths has been given by Hopper
et al® If one assumes that (1) the volume fraction
transformed is small, (2) the cooling (heating) rate is
constant, (3) the nucleation rate, I, and the growth
rate, g, have no intrinsic time dependence (i.e. the time
(or temperature) variation of these rates occurs only
via the temperature change), (4) the growth is spher-
ical, then the volume fraction transformed in cooling
from T, (the liquidus temperature) to T at a rate Q is
given by

X(1)= 2% f 1(T)dT<deT'g(T'>>3; (1)

30* T

this may be utilised in conjunction with any appro-
priate choices of g and I to compute X(T). In the
present work, specific selections of g and I will be
made in order to give correspondence with those used
in previous calculations of X(7T) by other methods:
they do not necessarily represent the best (or even
good) choices for these rates but this is irrelevant since
the basic intent is to evaluate the validity of certain
methods of computing X (7). Hence, any consistent
selections of I and g will suffice and the following
expressions will be used:*>
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where N° is the number of atoms per unit volume, k is
Boltzmann’s constant, # is viscosity, T, is the temper-
ature divided by T, (i.e. the reduced temperature), a,
is the average atomic diameter, and f§ is a dimension-
less parameter equal to the molar entropy of fusion in
units of R (the gas constant). If Equations (2) and (3)
are used in Equation (1), then the following expression
is found for X(T):

4T T —1-024
X(T)=K'N® e _ _
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In the general case Equation (4a) may be evaluated
numerically. However, if the viscosity exhibits an
Arrhenius temperature dependence, then the growth
integral can be expressed in terms of a standard form.
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Hence, if

it =aexn( ) (5

where A and C are constants, then it is convenient to
define

_ T —C
G(T; T,) = Af dT. T, exp <T>

T, r

x [1 —exp<_[;A,T;>]. (6)

Thus Equation (4) may be expressed
v C 1-024
t=rwo | atTae| - (74 g )|
x GX(T; T)). (N
In the Appendix it is shown that G(T; T,) can be
expressed as
A
G(x; x¢) = E[CzQ(CX) —exp (B)(C + B)*QI(C + )x]

- {CZQ(er)
—exp (B(C + BY*QUC + B x1}], (8)
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In Equations (8) and (9), x=T, !, x,=T, !, and
E,(y) is the first exponential integral'” and the final
expression for the reduced volume fraction transfor-

med during cooling at a constant rate, x = x(T,)/K’, is

therefore
. * dx’ 1-024(x)°
L= AN® —_— — —+Cx
g f (x')”""[ ((x'—l)z ’ ")]
x G3(x; x;). (10)

Volume fraction transformed assuming additivity

In general both x(t) and dx(t)/dt, the transformation
rate, are path dependent. However, when the principle
of additivity is valid, then the transformation rate is
solely a function of state.>'® In other words, the
transformation rate can be expressed by

5 = M) (1)
where h(T) is solely a function of temperature and j(x)
is only a function of the instantaneous value of the
volume fraction transformed.”

Equation (11) is much less formidable than Equa-
tion (1), and thus the assumption of additivity leads to
a greatly simplified effort for the computation of the
volume fraction transformed. However, an important
question, which is addressed in a preliminary fashion
herein, is the following: in which cases can the prin-
ciple of additivity be invoked? This question has been
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examined to some extent in the past'” and it is known
that this assumption provides exact results in two
cases, but, as discussed below, the expressions for the
volume fraction transformed are quite different in each
of these two cases. Thus, for the computation of x(¢) it
is not sufficient merely to invoke the principle of
additivity, but one must also examine how it comes
about.

First, it has been demonstrated that if the nucle-
ation rate is proportional to the growth rate (i.e. I and
g have the same temperature dependence), then addi-
tivity is precise and for a constant cooling rate,

1 (T dT \*

X(==| — 12
" (QL,.,K(T’)> .
I KT (N° —1-024T5,

KT 93\ a P\ (T, — 1)

x [1 —exp<w>]3}m. (12b)

It should be stressed, however, that in general I and g
have distinct temperature dependences and hence
Equations (12a) and (12b) are not expected to be
exact. In terms of the notation and transformations
which have been employed here, Equations (12a) and
(12b) can be written

o X(T)
L
*exp (— cx) — 1:024x°
- el e PR oo T
17474
x [1—exp(p) CXP(—,BX)P} :l : (13)

In the derivation of Equation (13) it has been assumed
once again that the viscosity exhibits an Arrhenius
form of temperature dependence.

The second instance which leads to additivity is
when site saturation occurs; site saturation refers to
the situation when all nucleation sites have been used
up prior to growth. In other words, if nucleation and
growth do not take place in a common temperature
region, then the transformation rate is given by Equa-
tion (11). However, it is important to note that the
reduced volume fraction transformed is not given by
Equation (13). In fact, the volume fraction transfor-
med will depend critically upon whether the nucle-
ation occurs at higher or lower temperature than the
growth, and whether one performs a cooling or
heating experiment. These points are illustrated in the
next section. However, here it is reemphasised that
Equation (13) is inappropriate for the calculation of
the volume fraction transformed if the principle of
additivity holds in a given situation as a result of site
saturation.

Results

Figure 1 shows the reduced volume fractions which
are transformed for both the heating and cooling paths,
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Figure 1. Logarithm of volume fraction transformed (arbitrarily
normalised ) as a function of reduced undercooling for constant cooling
and heating rates
————————— cooling, calculated using Equation (10)

cooling, calculated using Equation (13)
—.—.—.—.—.—. heating, calculated using Equations (15a) and (15b)

obtained by numerical computations of the general
expressions obtained by Hopper et al.‘® as well as by
the use of the approximate expression, Equation (13),
using the additivity assumption. All curves were cal-
culated for SiO, glass using the same physical para-
meters employed by MacFarlane.

Cooling path

First, the volume fraction crystallised for an arbitrary,
but constant, cooling rate will be considered. Figure 1
shows that both Equation (10) and Equation (13)
predict that crystallisation is essentially negligible
until a reduced undercooling AT, of 0-15 is reached,
increases rapidly for 0-15<AT, <025, and then
gradually slows down. A maximum value of crystallin-
ity is attained at a reduced undercooling of approxi-
mately 0-35. Obviously, this behaviour is strongly
dependent on the relative positions and magnitudes of
the nucleation and growth rates. The important result,
however, is that the values of X(T;) predicted by using
the additivity assumption are about three orders of
magnitude larger than those obtained using the rigor-
ous calculations. This large discrepancy has its origin
in the inappropriateness of the use of Equation (13)
for the present situation. This point is discussed in
detail subsequently.

It should also be stressed that the temperature
dependence of the reduced crystallinity computed by
the two methods is different, as illustrated in Figure 2,
where the values of the volume fraction crystallised
found by Equations (10) and (13) were adjusted
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Figure 2. Temperature dependence of volume fraction transformed
during cooling; predicted values using Equation (10) and (13) are
normalised to give an identical value at large undercooling
------------ Equation (10)

————————— Equation (13)

(normalised) to give the same value at large under-
cooling, where the crystallisation is complete. Although
one may observe that the predicted temperature
dependences of X(T,) are similar, they do not super-
impose. Hence, the additivity method, as embodied by
Equation (13), is not in error by merely a constant
(temperature independent) scaling factor.

Heating paths

The volume fraction transformed when heating from
T~ to T is given by an expression similar to that of
Equation (1);

4r T _ _ T 3
X(T) = WL I(T)dT<L dT’g(T’)> .

If one considers T'= T, , then following the procedure
which led to Equation (10) one obtains

% dx 1024(x)°
X' = AN°® iexp - ,4()6)2+cx’ G2 (15a)
;X (x'—=1)

where
G,=—G(x;1).

Figure 1, also, shows the reduced crystallinity com-
puted from Equations 15(a) and 15(b) for heating
from a given undercooling (AT;) to T,. The overall
behaviour is similar to that observed for the cooling
path although the final crystallinity (for AT, > 0-35) is
many orders of magnitude higher than that attained
during cooling. In this case (heating) the additivity
approximation is even worse than for the cooling path
and gives estimates which are 46 orders of magnitude

(14

(15b)
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smaller than the real crystallinity. It should be em-
phasised that the additivity approach predicts iden-
tical crystallinity values for both heating and cooling
paths because a complete overlap of the nucleation
and growth curves is intrinsically assumed.

Parenthetically, it should be remarked that often
experiments do not reveal such a large difference
between x, in heating and cooling due, in part, to
transient nucleation effects. At low temperatures
(where the viscosity is large), the transient nucleation
time is long and thus the effective nucleation rate is
reduced. Hence, in a heating experiment, the low
temperature portion of the nucleation curve (which
does not overlap the growth curve) will not contribute
to x,.

It is interesting to compare the crystallinity curve
shown in Figure 1 for heating with the values com-
puted for the limiting case of site saturation. In this
latter case, the first integral in the general expression,
Equation (1), is equal to the total number of nuclei, N,
and thus Equation (1) reduces to

4N ([T 3
=3t (J, mar )

The curve obtained by use of Equation (16) coincides
with the ‘heating’ curve shown in Figure 1, which was
computed using the precise equation for the volume
fraction crystallised. This clearly demonstrates that
site saturation is an excellent approximation in this
case, and that the additivity approximation can be
used to compute X', but one must employ Equation
(16) and not Equation (13). In addition, it should be
noted that the site saturation approximation would
predict that x * = 0. Thus, although the site saturation
concept is useful in indicating that a small degree of
crystallinity will result when cooling, it is not adequate
to give a prediction of the small amount of crystals
which will be formed. Thus, for cooling paths, one
must resort to the use of Equation (10).

(16)

Overlap of nucleation and growth

As discussed above, the additivity approximation
should only be strictly valid in two cases, either for site
saturation or when there is a substantial overlap
between the nucleation and growth curves. Below we
discuss the extent of overlapping for SiO, glass in both
graphical and numerical representations.

Figure 3 shows the logarithm of the reduced rates
(I/1 nax> 8/8max) as functions of reduced temperature;
these curves were calculated by means of Equations
(2) and (3), using the same constants and viscosity
values employed in Reference 5. The maximum nucle-
ation rate occurs at T,~0-69 and the maximum
growth rate at T,~097. Therefore, taking into
account the exponential dependence of both I and g
upon temperature and the large distance between the
two maxima, it is clear that very little overlap exists
between the two curves. '

A more quantitative way of analysing the degree of
overlap is shown below. Let us define the following
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Figure 3. Logarithm of reduced nucleation (1/1,,.) and growth
(8 Epay ) rates for SiO, glass as a function of reduced temperature

ratio, 6, by
_ {(Tg(TdT '
~ [A(NdTfgX(T)dT]V*"

it is clear that both integrals are equal if I(T") and g(T)
overlap completely, and thus 6 = 1, and if there is no
overlap, 8 = 0. By using Equations (2) and (3) for I(T)
and g(T) and integrating numerically between T,, and
T,, 6=092 x 10™ ¢, Therefore, there is only a mar-
ginal superposition between the nucleation and
growth curves.

(17)

Discussion

An assessment has been given of approximate means
of computing the volume fraction of crystallites
formed for continuous cooling and heating paths. As a
typical example computations were performed for the
crystallisation of S10, glass, and, in particular, the use
of the concept of additivity was evaluated.

There are only two cases for which it is known that
the additivity approximation is valid, (i) site satur-
ation and (i1) I ~ g; both imply a path independent
crystallisation rate but they involve distinct expres-
sions for X(T).

For homogeneous crystal nucleation the maximum
nucleation rate typically falls at larger under-
coolings''®'!V) while the maximum crystal growth rate
occurs relatively close to T,.'?) In this case the
overlap between I and g will be small and hence site
saturation will prove to be a good approximation in
computing X(T) for heating but the additivity prin-
ciple will be of limited utility for calculating X(T) in
cooling. This was illustrated herein for the crystallis-
ation of SiO, glass.

On the other hand, for crystallisation via a hetero-
geneous mechanism, the peak nucleation rate may in
principle occur at a temperature below, above, or near
that of maximum crystal growth. In addition, the
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degree of overlap between nucleation and growth
curves can be small or large. Hence, the applicability
of the additivity principle for the calculation of hetero-
geneous crystallisation depends upon the key para-
meters governing the relative positions of I, and
Zmax> and the widths of the nucleation and growth
curves. An investigation of such effects are reserved for
a separate study.

A key issue related to the prediction of x, is the
estimation of critical cooling rates for glass formation.
The prediction of critical cooling rates depends both
on the model used to relate the volume fraction
transformed to the kinetic parameters (I and g) and on
the choice of the temperature dependent nucleation
and crystal growth rates. In order to obtain meaning-
ful values for the calculated critical cooling rates one
should probably employ experimentally determined
nucleation and growth rates since the theoretical rates
can be in error by many orders of magnitude."'® For
the present analysis, however, it is merely desired to
assess the sensitivity of the model chosen for comput-
ing x, to the ultimate result for the critical cooling rate,
Q.. Hence, one can determine the error produced in Q.
due to the model. If one designates Q_. and Q_, as the
critical rates for the exact and additivity calculations,

Qe _ (xe>”“
QcA XA

where x, and x, are the saturation values of crystallin-
ity for ATr > 0-35. From Figure 1, it can be concluded
that Q../Q., = 0-2, and therefore, although the use of
the additivity principle produces errors of several
orders of magnitude in X(T), it results in an error of
more modest proportions for Q..

(18)
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Appendix
An expression is derived below for the integral of the

growth rate, i.e. of Equation (8). B
Equation (6) gives the definition of G(T;; T,)

G(T; T)
T —c — BAT,
=A| dTTexp( =) 1 )
Jpamten(5 ) 1-ew(=57) ]
(A1)

if one introduces new variables x'(=1/T}), x(=
1/T,), and x (= 1/T;), Equation (A1) it becomes

xrd !
G{x;x))=A {J x—iexp (—ex)—exp B

X

y J"‘ dx exp[—(c+ ﬁ)x’]}

NE (A2)

X
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Both integrals in Equation (A2) are of the same form,
and either may be expressed in slightly different form
after integration by parts. If « denotes either c or ¢ + §,
then

J y 2 exp(—ay)dy

- 1/2{@_(—_&1‘2(1 )

exp (—axy)
x? x?

+a2[‘[mexp(z;—z’) dz,_‘rocxpi'—z') dz,jl} (A3)

where z =ay, z=uax, and z =ax,. The last two
integrals in Equation (A3) are E(z) and E,(z), the
exponential integrals.”) If we define F(z)=
zexp (z) E{(z), then

j y dexp(—ay)dy=

x
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2 ax

_exp (—axy) (1 —axe F(wq))]

oxg oxg

_ ﬁ[exp(—ax) <1 —ax F(ax)>
ax

(A4)

and the use of Equation (A4) in Equation (A2) yields
Equation (8) in the main body of the text.
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