LITHIUM CONDUCTING GLASSES: THE \(\text{Li}_2\text{O} \cdot \text{B}_2\text{O}_3 \cdot \text{TeO}_2 \) SYSTEM

A.C. MARTINS RODRIGUES and M.J. DUCLOT

Laboratoire d'Ionique et d'Electrochimie du Solide (U.A 1212), I.NPG/ENSEEG, B.P. 75, 38402 St. Martin-d'Heres, France

Received 24 July 1987

New Li vitreous conductors have been synthesized using simultaneously \(\text{B}_2\text{O}_3 \) and \(\text{TeO}_2 \) as glass forming networks. \(T_g \) measurements and electrical conductivity are presented for different \(\text{B}_2\text{O}_3/\text{TeO}_2 \) ratios. Results show a "mixed former effect" on the electrical conductivity: at room temperature \(\text{Li}_2\text{O} \cdot \text{B}_2\text{O}_3 \cdot \text{TeO}_2 \) is more conducting (\(\approx 2 \) orders of magnitude higher) than the binary systems \(\text{Li}_2\text{O} \cdot \text{B}_2\text{O}_3 \) and \(\text{Li}_2\text{O} \cdot \text{TeO}_2 \).

1. Introduction

In order to build up all-solid state batteries, several studies are undertaken nowadays on glassy electrolytes conducting by lithium. In the case of oxide glasses, it has been shown that the simultaneous use of two former networks leads to a significant enhancement of the conductivity. Such effect is called the "mixed former effect". For example, a gain of one or two orders of magnitude is observed by adding \(\text{B}_2\text{O}_3 \) to \(\text{SiO}_2 \) or \(\text{P}_2\text{O}_5 \) in \(\text{Li}^+, \text{Na}^+, \text{or Ag}^+ \) glassy conductors [1-5]. It is well known that \(\text{B}_2\text{O}_3 \) is among the best glass formers. The disposibility of the \(p \) orbitals in boron allows the change of its hybridation state and its coordination index. This latter was observed by NMR for \(\text{Na}_2\text{O} \cdot \text{SiO}_2 \cdot \text{BO}_3 \) system [6]. On the other hand, a few studies were performed on \(\text{TeO}_2 \) based glassy electrolytes. The first lithium tellurite, in the vitreous state, was obtained by Brady [7,8] and studied for structural considerations. More recently the \(\text{Li}_4\text{Te}_2\text{O}_7 \) glass was synthesized by Sunandana and Kumaraswani [9] in order to study their electrical properties.

The present work deals with the mixed former effect on the \(\text{Li}_2\text{O} \cdot \text{B}_2\text{O}_3 \cdot \text{TeO}_2 \) glass system.

2. Experimental

In order to compare glasses with the same number of cationic network former, we have chosen to write \(\text{TeO}_2 \) as \(\text{Te}_2\text{O}_6 \). The general formula of studied glasses is

\[
0.4\text{Li}_2\text{O} \cdot 0.6(x\text{B}_2\text{O}_3(1-x)\text{TeO}_2) \quad .
\]

2.1. Samples preparation

Glasses are obtained by melting calculated quantities of \(\text{Li}_2\text{CO}_3 \) (Prolabo, Rectapur), \(\text{TeO}_2 \) (Janssen) and \(\text{B}_2\text{O}_3 \) (Merck) in a platinum crucible. Mixtures were melted for 30 min between 700 and 900°C according to the composition and then quenched in a cylindrical mould in air at room temperature. For samples with high \(\text{B}_2\text{O}_3 \) content the melts were poured into a polished brass plate and the formed drop is immediately flattened by another plate. In order to relieve internal strains, the samples were annealed during 24 h at a temperature \(30^\circ \) lower than the glass transition temperature \((T_g) \). However, samples remain very brittle.

2.2. Characterization

Chemical analysis (by plasma emission spectros-copy) show less than 1% difference between nominal and effective compositions. The amorphous state is controlled by X-ray diffraction: for the binary system \(y\text{Li}_2\text{O}(1-y)\text{TeO}_2 \) glassy samples are obtained in a short glass forming region defined by \(0.30<y<0.40 \); for the ternary system \(0.4\text{Li}_2\text{O}-...
Gold electrodes are deposited by rf sputtering on both faces of the samples. Electrical measurements

\[\sigma(T) \]

\[\log \sigma (\Omega^{-1} \text{cm}^{-1}) \]

\[\begin{array}{|c|c|c|c|c|}
\hline
x & \varepsilon_0 (\text{eV}) & \varepsilon_{\text{rel}} & \log \sigma & T_g (^\circ \text{C}) \\
\hline
0.30 & 1.13 & 1.48 \times 10^{-12} & 3.45 & 267 \\
0.33 & 1.12 & 2.95 \times 10^{-12} & 3.58 & 263 \\
0.37 & 1.15 & 1.58 \times 10^{-11} & 4.82 & 260 \\
0.40 & 1.00 & 5.75 \times 10^{-11} & 3.39 & 257 \\
\hline
\end{array} \]

\(0.6(x\text{B}_2\text{O}_3(1-x)\text{Te}_2\text{O}_4)\) all the samples are amorphous.

The glass transition temperature was measured by differential scanning calorimetry (DSC) with a heating rate equal to \(10^\circ\text{C/min}\). Table 1 gives \(T_g\) for the binary \(\text{Li}_2\text{O}-\text{Te}_2\text{O}_4\). A slight decrease of \(T_g\) is observed when \(\text{Li}_2\text{O}\) content increases. For the ternary system fig. 1 gives the \(T_g\) variation versus \(x\). \(T_g\) increases continuously with the \(\text{B}_2\text{O}_3\) content, giving a small variation up to \(x=0.5\). At this point, \(T_g\) rises steeply with the increase of \(x\).

2.3. Electrical measurements

Gold electrodes are deposited by rf sputtering on both faces of the samples.
b) Known 14 in the Na₂O-B₂O₃-SiO₂ system and by Hevesi and Navrotsky [10] in the Na₂O-B₂O₃-SiO₂ system. This demixing does not take place for kinetic reasons. This involves an increase of the free mixing energy \(\Delta G_m \) and of the partial free energies and, therefore, the increase of the thermodynamic activity of both glasses: 0.4Li₂O-0.6B₂O₃ and 0.4Li₂O-0.6Te₂O₃. Fig. 4 shows for different temperatures the theoretical activity and the \(\Delta G_m \) variations with x, assuming a regular solution model.

\[
\Delta G_m = \alpha x (1 - x) + RT \ln x + (1 - x) \ln (1 - x)
\]

with \(\alpha = 10 \text{ kJ/mole} \). We can consider that the Li₂O activity increases in each component. According to the weak electrolyte model [11], the enhancement of the conductivity at the limit compositions, is due to these Li₂O activity variations.

3. Results and discussion

For the binary system \(y \text{Li}_2\text{O} \,(1-y)\text{Te}_2\text{O}_3 \), table 1 shows a linear increase of the conductivity versus Li₂O content, while the activation energy exhibits small variation. For the ternary system the isothermal variations of the conductivity versus \(x \) show (fig. 2) two maxima for \(x = 0.17 \) and \(x = 0.91 \). We notice that these maxima are close to the limit compositions of the system. A minimum occurs at \(x = 0.5 \). The maxima are less pronounced when the temperature increases and they practically vanish at 200°C.

Fig. 3 shows that the conductivity maxima are related to two minima of the activation energy. Thermodynamic consideration may explain qualitatively the occurrence of these two extrema. The 0.4Li₂O-0.6(xB₂O₃,(1-x)Te₂O₃) glass may be considered as resulting from the mixtures of the two limit compositions \(x(0.4\text{Li}_2\text{O}-0.6\text{B}_2\text{O}_3) \) and \((1-x)(0.4\text{Li}_2\text{O}-0.6\text{Te}_2\text{O}_3) \). The investigated glasses tend to demixing because of the mixing enthalpy \(\Delta H_m \) as shown by Kone [4] in the Na₂O-B₂O₃-P₂O₅ system and by Hervig and Navrotsky [10] in the Na₂O-B₂O₃-SiO₂ system. Demixing does not take place for kinetic reasons. This involves an increase of the free mixing energy \(\Delta G_m \) and of the partial free energies and, therefore, the increase of the thermodynamic activity of both glasses: 0.4Li₂O-0.6B₂O₃ and 0.4Li₂O-0.6Te₂O₃. Fig. 4 shows for different temperatures the theoretical activity and the \(\Delta G_m \) variations with x, assuming a regular solution model.

\[
\Delta G_m = \alpha x (1 - x) + RT \ln x + (1 - x) \ln (1 - x)
\]

with \(\alpha = 10 \text{ kJ/mole} \). We can consider that the Li₂O activity increases in each component. According to the weak electrolyte model [11], the enhancement of the conductivity at the limit compositions, is due to these Li₂O activity variations.

Acknowledgement

The present research was carried out with the financial support of the Groupement Scientifique (CNRS) "Stockage Electrométhique de l'Énergie". ACMR is working under a Brazilian CNPq grant.

References